library(macpan2)
library(ggplot2)
library(dplyr)
library(broom.mixed)
options(macpan2_verbose = FALSE)
The calibration interface allows for the direct specification of likelihood and prior components. The objective function in calibration is the summation of negative log likelihoods and negative log prior densities.
By default, the interface assumes poisson
likelihoods and uniform priors. This is
demonstrated in the objective function in this calibration
example. The calibration output shows a poisson likelihood is used
for the trajectory variable I
and no additional objective
function terms indicate the parameters beta
and
R
have an improper uniform prior density. Indicating we
have no prior information about these parameters.
To specify a likelihood and/or prior for a variable in our model we
can select a distribution from the list of available
distributions,?macpan2::distribution
.
Specifying priors is usually done through the par
argument of mp_tmb_calibrator
. Here
is an example of prior specification in the SHIVER model. The parameter
logit_p
, the logit transformed proportion p
,
is given a normal prior using the distribution function
macpan2::mp_normal
and two numeric inputs for the
location
and standard deviation, sd
. The
remaining parameters are given an improper uniform prior using
macpan2::mp_uniform
.
A likelihood can be specified for the trajectory variables in our
calibration set-up, those identified in the traj
argument
of mp_tmb_calibrator
.
Further into the SHIVER example,
the variables hospitalizations(H
) and
reported_incidence
are both specified with a negative
binomial likelihood using the macpan2::mp_neg_bin
function.
For likelihoods the location parameter is not set because the
calibration machinery will use the simulated value for this trajectory
as the location. The dispersion parameter for mp_neg_bin
is
required.
Distributional parameters are those parameters that characterize the
distribution. Often these are the location and standard deviation. By
default, these parameters are assumed fixed and not fit. This was the
case in the previous [Prior Specification] example where the
distributional parameters for location
and sd
were specified as numeric constants.
Distributional parameters are also assumed fixed when set to the name
of an existing variable in the model. Ex.
mp_normal(sd = "sd_var")
Distributional parameters however, can be fit in the calibration
framework in addition to other parameters using
macpan2::mp_fit
. See
?macpan2::fit_distr_params
for details. The previous
example in [Likelihood Specification] shows the negative binomial
dispersion parameter being fit with mp_fit
. The numeric
value provided for dispersion is the starting value for the optimization
routine. After optimization, we can see the fitted dispersion
distributional parameters in the coefficient table. By default, they are
named with a leading distr_params_
followed by their
distributional parameter name and corresponding model variable name.
Distributional parameters have default parameter transformations
inherited from their respective distribution. See the
default_trans
argument for each distribution
(?macpan2::distribution
). For example, standard deviations
by definition are a strictly positive number, so the log transformation
is convenient to use to ensure this condition is met.
Defaults can be changed by either passing a distributional parameter
transformation function ?macpan2::transform_distr_param
to
the trans_distr_param
argument in
?macpan2::fit_distr_params
functions to change a single
transformation. To update all transformations, a named list of
transformations from ?macpan2::transform_distr_param
for
each distributional parameter can be given to the
default_trans
argument of the distribution.
We can specify priors on distributional parameters by:
spec = (
mp_tmb_library("starter_models", "sir", package = "macpan2")
## 1. update the spec to include a new variable named 'my_var' to serve as
## the standard deviation parameter for the Normal prior on 'beta'.
## A numeric value of 0.1 is specified as the default for 'my_var', the
## starting value in optimization.
|> mp_tmb_insert(default = list(my_var = 0.1))
)
## generate data for calibration
data = mp_simulator(spec, 50, "infection") |> mp_trajectory()
## set-up calibrator
cal = mp_tmb_calibrator(
spec
, data
, traj = "infection"
## 2. We set a Normal prior on beta, and set the `sd` argument to 'my_var'
## (would it ever make sense to use mp_fit for `sd` here?)
, par = list(beta = mp_normal(location = 0.35, sd = mp_nofit("my_var"))
## 3. setting a log-normal prior on 'my_var'
, my_var = mp_log_normal(1,1)
)
, default = list(beta = 0.25)
)
## we can see the prior density for both 'beta' and 'my_var' in the calibration
## objective function
cal$simulator$tmb_model$obj_fn$obj_fn_expr
#> ~-sum(dpois(obs_infection, clamp(sim_infection))) - sum(dnorm(beta,
#> 0.35, exp(my_var))) - sum(dnorm(log(my_var), 1, 1))
#> <environment: 0x5642500c8418>
mp_optimize(cal)
#> $par
#> params params
#> 0.2000017 1.0015207
#>
#> $objective
#> [1] 53.08736
#>
#> $convergence
#> [1] 0
#>
#> $iterations
#> [1] 9
#>
#> $evaluations
#> function gradient
#> 10 10
#>
#> $message
#> [1] "relative convergence (4)"
mp_tmb_coef(cal)
#> term mat row col default type estimate std.error
#> 1 params beta 0 0 0.25 fixed 0.2000017 0.009166585
#> 2 params.1 my_var 0 0 0.10 fixed 1.0015207 0.707373865