Package: macpan2 (via r-universe)

November 15, 2024
Title Fast and Flexible Compartmental Modelling
Version 1.11.1

Description Fast and flexible compartmental modelling with Template
Model Builder.

License GPL-3
Depends R (>=4.1.0)

Imports TMB (>= 1.9.0), Matrix, oor, jsonlite, MASS, memoise, stats,
utils

Suggests covr, knitr, rmarkdown, dplyr, tidyr, ggplot2, cowplot,
lubridate, testthat (>= 3.0.0), htmltools, visNetwork,
macpan2helpers, kableExtra, broom.mixed, outbreaks, tmbstan,
numDeriv, parallel, iidda.api

LinkingTo TMB, RcppEigen
VignetteBuilder knitr

BugReports https://github.com/canmod/macpan2/issues

Additional_repositories https://canmod.r-universe.dev
Config/testthat/edition 3

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2.9000

URL https://canmod.github.io/macpan2/,
https://github.com/canmod/macpan2

Repository https://canmod.r-universe.dev

RemoteUrl https://github.com/canmod/macpan2

RemoteRef HEAD

RemoteSha 22a5583be733e1862e5210bf42f78066defc4c1d

https://github.com/canmod/macpan2/issues
https://canmod.r-universe.dev
https://canmod.github.io/macpan2/
https://github.com/canmod/macpan2

2 Contents

Contents
BinaryOperator 3
COMPATISON .« . v v v v v e ittt e e e e e e e 4
distribution L e e e e e e e 5
EMPLY_MALIIX o oo e e e e e e e e 6
engine_eval e e e e e 7
engine_functions L 8
finalizer e 18
find_all_paths L 19
fit_distr_params L. 19
initial_valid_vars e 21
LedgerDefinition e 21
Make _eXPr_ParSer v v v v e e e e e e e e e e e e e e e e e e e 22
MP_AZEIEZALE v v v v i e e e e e e e e e e e e e e e e e e 23
MP_CarteSian oo e e e e e e e e e e e e e 23
mp_default 24
mp_dynamic_model L 25
mp_dynamic_simulatoro 25
mp_effects_descr 27
mp_euler e 27
mp_expand e e e e e e e e e e e e e 29
MP_EXITACt o ot e e e e e e e e e e e e e e e e e 29
mp_factors e e 30
mp_final e 30
mp_flow_frame 31
MP_ZIOUP « . v ¢ v v e 31
mp_index e 32
mp_initial L e e 34
MP_JOIN vt e e e e e e e e e e e e e e e e 35
mp_labels 37
mp_layout_grid 37
mp_layout_paths 38
mp_ledgers 39
mp_linear e 40
mp_lookup e e e 40
mp_model_starter L. e e 41
MP_OPtIMIZE it e e e e e e e e e 41
mp_optimizer_output e e e e e e e 42
00T o T 0 | 42
mp_per_capita_flow 43
MP_POSIIONS o v o e e e e e e 44
mp_rbf. . e e 45
mp_reduce. e e e 46
mp_reference e 46
MP_TENAME . .« « . v v o v e 47
mp_simulator e 47

mp_sim_bounds 48

BinaryOperator 3

mp_sliCes e e e e 48
IMP_SQUATE . . .« o v v v o v v e e e e e e e e e e e e e e e 49
mp_state_dependence_frame L 49
MP_StAtE_VATS ¢ v v v e e e e e e e e e e e e e e e e e e 50
mp_structured_VECtOr e e e e e e e e e 50
mp_subsSet e e 51
MP_SYMMELTIC o v vt e e e e e e e e e e e e e e e e e 52
mp_time_scale e 52
mp_tmb . .. e e e 53
mp_tmbstan_coef 53
mp_tmb_calibrator L 54
mp_tmb_coef 55
mp_tmb_expr_list 56
mp_tmb_fixef_cov 57
mp_tmb_insert e e 57
mp_tmb_insSert_reports e e e e e 60
mp_tmb_library e 61
mp_tmb_model_spec 62
MP_LTA] . o v v ot e e e e e e e e e e e e e e e e 63
MP_trajectory o o o o it i e e e e e e e e e 63
mp_triangle e e e 65
MP_UNION .+« . v v v v e et et e e e e e e e e e 66
MP_ZETO_VECIOT . . .+ v v v v v v e i e e e e e e e e e e e e e e 66
names_and_labels L e 67
NSt . . . e e e e e e e e e e e 69
) 70
Reader e e e e 70
show_models e 71
simple_SImMS e e e e e e 72
StringData 72
tO_POSItiONS e e e e e 73
TO_SIIING« o o 74
Transform e e e e e e 74
transform_distr_param oL 75
Index 76
BinaryOperator Binary Operator
Description

Convert a function that represents an elementwise binary operator into one that is consistent with the

C++ engine. This function is intended to clarify how macpan2 treats binary operators, which is a lit-

tle different from base R. The difference is clarified in vignette (”"elementwise_binary_operators”),
and BinaryOperator is primarily used as a resource for that vignette.

4 comparison

Usage

BinaryOperator (operator)

Arguments
operator A binary operator. Valid binary operations have the following characteristics.
- They are functions.
- They have exactly two arguments.
- They do not have any ... arguments
Value

A binary operator consistent with the C++ engine.

Examples

set.seed(1L)

A = matrix(abs(rnorm(6)), 3, 2) # 3
x = matrix(abs(rnorm(3))) # 3
y = t(abs(rnorm(2))) # 1
times = BinaryOperator(™*")

pow = BinaryOperator(®*")
identical(times(A, x), times(x, A)) ## TRUE
identical(pow(A, y), pow(y, A)) ## FALSE

by 2 matrix
by 1 matrix
by 2 matrix

comparison Comparison Functions

Description

Comparison Functions
Usage

all_equal(x, y)

all_consistent(x, y)

not_all_equal(x, y)

all_not_equal(x, y)

Arguments

X character object

y character object

distribution 5

Functions
* all_equal(): Is it true that all corresponding elements of x and y are equal, have the same
shape, and have no missing values?

e all_consistent(): Is it true that all corresponding elements of x and y are either equal or at
least one is a blank string, have the same shape, and have no missing values?

* not_all_equal(): Complement of all_equal.

* all_not_equal(): Do not know yet. Currently unused; should we remove?

distribution Distributions

Description

Distributions which can be used to specify prior or likelihood components in model calibration.
* Uniform Distribution (Improper), only appropriate for prior components - mp_uniform
e Normal Distribution - mp_normal
* Log-Normal Distribution - mp_log_normal
* Logit-Normal Distribution - mp_logit_normal
¢ Poisson Distribution - mp_poisson

* Negative Binomial Distribution - mp_neg_bin

Usage

mp_uniform(trans_distr_param = list())

mp_normal (
location = mp_distr_param_null("location"),
sd,
trans_distr_param = list(location = mp_identity, sd = mp_log)

)

mp_log_normal(
location = mp_distr_param_null("location"),
sd,
trans_distr_param = list(location = mp_identity, sd = mp_identity)

)

mp_logit_normal(
location = mp_distr_param_null("location”),
sd,
trans_distr_param = list(location = mp_identity, sd

mp_identity)

6 empty_matrix

mp_poisson(
location = mp_distr_param_null("location”),
trans_distr_param = list(location = mp_identity)

)
mp_neg_bin(
location = mp_distr_param_null("location"),
disp,
trans_distr_param = list(location = mp_identity, disp = mp_log)
)
Arguments

trans_distr_param
Named list of transformations for each distributional parameter. See transform_distr_param
for a list of available transformations.

location Location parameter. Specifying the location parameter is only necessary when
the distribution is used as a prior distribution. If it is used as a likelihood compo-
nent the location parameter will be taken as the simulated variable being fitted
to data, and so this location parameter should be left to the default.

sd Standard deviation parameter.
disp Dispersion parameter.
Details

All distributional parameter arguments can be specified either as a numeric value, a character string
giving the parameter name, or a distributional parameter object (See fit_distr_params).

empty_matrix Empty Matrix

Description

Empty matrices are useful when defining matrices that do not need to be initialized because they

will get computed before they are required by other expressions. They can also provide a useful

placeholder for matrices that should only have a value after a certain phase in the simulation.
Usage

empty_matrix

Format

A numeric matrix with zero rows and zero columns.

engine_eval 7

Examples

spec = mp_tmb_model_spec(during = list(x ~ time_step(@)))
identical (spec$empty_matrices()$x, empty_matrix) ## TRUE

engine_eval Engine Evaluation

Description

Evaluate an expression in the TMB-based C++ simulation and objective function engine. This
function is useful for trying out the engine_functions that can be used to define macpan2 models.

Usage

engine_eval(
.expr,
.matrix_to_return,
.tmb_cpp = getOption("macpan2_dl1l"),
.structure_labels = NulllLabels()

Arguments

.expr Expression as a one-sided formula, the right-hand-side of which is treated as the
expression to be evaluated.

Named objects that can be coerced into numeric matrices.

.matrix_to_return
Optional name of one of the matrices given in . .. to be returned. If this argu-
ment is missing, the matrix that will be returned is the matrix returned by the
expression on the right-hand-side of the formula.

.tmb_cpp Name of a C++ program defining the engine. Typically you just want to use the
default, which is macpan2, unless you are extending the engine yourself.

.structure_labels
Deprecated.

Value

Matrix being produced on the right-hand-side or matrix given in .matrix_to_return if it is pro-
vided.

https://canmod.github.io/macpan2/articles/cpp_side.html

8 engine_functions

Examples

engine_eval(~ exp(y), y = pi) # ~ 23.14069

It is not currently possible to assign values to a subset of
a matrix in a natural way (e.g. you cannot do things like x[1] = exp(y)),
but you can achieve this functionality using the assign function.
engine_eval(~ assign(x, 1, 0, exp(y))

, X = rep(0, 2)

’ y = pl
, .matrix_to_return = "x"
)
engine_functions Engine Functions
Description

Functions currently supported by the C++ TMB engine for constructing expressions for defining
model simulations.

Details

The quickest way to experiment with these functions is to use the engine_eval function, as in the
following example that calculates a force of infection.

engine_eval(~ beta *x I / N

, beta = 0.25
, I = 1e3
, N = 1e7

To produce a simulation using these engine functions, one may use simple_sims.

simple_sims(
iteration_exprs = list(x ~ x - 0.9 * x),
time_steps = 5,
mats = list(x = 1)

Elementwise Binary Operators:

Elementwise binary operators take two matrix-valued arguments and apply a binary operator (e.g.
+, *) to each set of corresponding elements, and return the corresponding matrix-valued output
containing the resulting elements. What does ’corresponding’ mean? If the two matrix-valued ar-
guments have the same shape (same number of rows and columns), then two elements correspond
if they occur in the same row and column position in the two matrices. If the two matrices are
not of the same shape but there is one row and/or one column in either matrix, then the singleton
rows and columns are recycled sufficiently many times so that they match the shape of the other
matrix. If after recycling singleton rows and columns the matrices are still of different shape, then
an error is thrown and the matrices are said to be incompatible.

engine_functions 9

Functions:
e X + y
e x-y
® X % y
e x/y
e X A y
Arguments:
* x — Any matrix with dimensions compatible with y.
* y — Any matrix with dimensions compatible with x.
Return:
* A matrix with the binary operator applied elementwise after any necessary recycling of rows
and/or columns.
Examples:
engine_eval(~ 1 + 2)
engine_eval(~y x z, y = 1:3, z = matrix(1:6, 3, 2))
engine_eval(~ 1/ (1 -y), y = 1/4)

Unary Elementwise Math:

Functions:
* log(x) — Natural logarithm
* exp(x) — Exponential function
¢ cos(x) — Cosine function
e proportions(x, limit, eps) —matrix of x / sum(x) or rep(limit, length(x)) if sum(x)

<eps

Arguments:
* X — Any matrix
e limit — numeric value to return elementwise from proportions if sum(x) < eps
¢ eps — numeric tolerance for sum(x)

Return:

* A matrix with the same dimensions as x, with the unary function applied elementwise.
Examples:

engine_eval(~ log(y), y = c(2, 0.5))

Integer Sequences:

Functions:
e from:to — Inclusive and ordered sequence of integers between two bounds.
* seq(from, length, by) — Ordered sequence of integers with equal spacing between adja-

cent values.

Arguments:
* from — Scalar integer giving the first integer in the sequence.
* to — Scalar integer giving the last integer in the sequence.
¢ length — Number of integers in the sequence.

10

engine_functions

* by — Scalar giving the difference between adjacent values in the sequence.

Return:
* Column vector with a sequence of integers.
Details:
The colon operator works much like the base R version :. It takes two scalar-valued integers
and returns a column vector with all integers between the two inputs.
The seq function is a little different from the base R default, seq, in that it allows the user
precise control over the length of the output through the length argument. The base R function
gives the user this option, but not as the default.
Examples:
engine_eval(~ 1:10)
engine_eval(~ seq(1, 10, 2))
Replicate Elements

Functions:

* rep(x, times) — Replicate a column vector a number of times, by repeatedly stacking it
on top of itself.

* rep_each — Not yet developed.
* rep_length — Not yet developed.

Arguments:

¢ x — A scalar-valued variable to repeat.

* times — A scalar-valued integer variable giving the number of times to repeat x.
Return:

* Column vector with times copies of x stacked on top of each other.
Examples:

engine_eval(~ rep(1, 10))

Matrix Multiplication:

Functions:
e X %*% y — Standard matrix multiplication.
* X %x% y — Kronecker product

Arguments:
* x — A matrix. For the standard product, x must have as many columns as y has rows.
¢ y — A matrix. For standard product, y must have as many rows as x has columns.

Return:

* The matrix product of x and y.
Examples:
engine_eval(~ (1:10) %*% t(1:10))
engine_eval(~ (1:10) %x% t(1:10))

Parenthesis:
The order of operations can be enforced in the usual way with round parentheses, (.

engine_functions 11

Reshaping and Combining Matrices:
Functions:
e c(...) — Stack columns of arguments into a single column vector.

e cbind(...) — Create a matrix containing all of the columns of a group of matrices with the
same number of rows.

* rbind(...) — Create a matrix containing all of the rows of a group of matrices with the
same number of columns.

e matrix(x, rows, cols) — Reshape a matrix to have rows rows and cols columns. The
input x must have rows * cols elements.

e t(x) — Standard matrix transpose.

Arguments:

e ... — Any number of dimensionally consistent matrices. The definition of dimensionally
consistent depends on the function.

* x — Can be any matrix for t, but for matrix it must have rows * cols elements.
¢ rows — Scalar integer giving the number of rows in the output.
¢ cols — Scalar integer giving the number of columns in the output.

Return:

* A combined or reshaped matrix.

Details:

Any number of column vectors can be combined into a bigger column vector.

Column and row vectors of the same length can be combined using the cbind and rbind func-
tions respectively

The matrix function can be used to redefine the numbers of rows and columns to use for arrang-
ing the values of a matrix. It works similarly to the base R matrix function in that it takes the
same arguments. On the other hand, this function differs substantially from the base R version
in that it must be filled by column and there is no byrow option.

Matrices can be transposed with the usual function, t.

Examples:

engine_eval(~ c(a, b, ¢), a =1, b =10:13, ¢ = matrix(20:25, 3, 2))
engine_eval(~ cbhind(a, 10 + a), a = 0:3)

engine_eval(~ rbind(a, 10 + a), a = t(0:3))

engine_eval(~ matrix(1:12, 4, 3))

engine_eval(~ t(1:3))

Matrix Diagonals:
Functions:
* to_diag(x) — Create a diagonal matrix by setting the diagonal to a column vector, x.
e from_diag(x) — Extract the diagonal from a matrix, x, and return the diagonal as a column
vector.
Arguments:
* x — Any matrix (for from_diag) or a column vector (for to_diag). It is common to assume

that x is square for from_diag but this is not required.

Return:

12

engine_functions

e to_diag(x) — Diagonal matrix with x on the diagonal.
e from_diag(x) — Column vector containing the diagonal of x. A value is considered to be
on the diagonal if it has a row index equal to the column index.

Details:

The to_diag function can be used to produce a diagonal matrix by setting a column vector equal
to the desired diagonal. The from_diag does (almost) the opposite, which is to get a column
vector containing the diagonal of an existing matrix.

Examples:

engine_eval(~from_diag(matrix(1:9, 3, 3)))

engine_eval (~to_diag(from_diag(matrix(1:9, 3, 3))))
engine_eval(~from_diag(to_diag(from_diag(matrix(1:9, 3, 3)))))

Summarizing Matrix Values:
Functions:

e sum(...) — Sum all of the elements of all of the matrices passed to

e col_sums(x) — Row vector containing the sums of each column.

* row_sums(x) — Column vector containing the sums of each row.

e group_sums(x, f, n) — Column vector containing the sums of groups of elements in x.
The groups are determined by the integers in f and the order of the sums in the output is
determined by these integers.

Arguments:

e ... — Any number of matrices of any shape.

* x — A matrix of any dimensions, except for group_sums that expects x to be a column
vector.

e f — A column vector the same length as x containing integers between @ and m-1, given m
unique groups. Elements of f refer to the indices of x that will be grouped and summed.

* n — A column vector of length m. If f does not contain group k in [@, m-1], group_sums
skips this group and the output at index k+1 is n[k+1].

Return:
* A matrix containing sums of subsets of the inputs.

Details:

The row_sums and col_sums are similar to the base R rowSums and colSums functions, but with
slightly different behaviour. In particular, the row_sums function returns a column vector and
the col_sums function returns a row vector. If a specific shape is required then the transpose t
function must be explicitly used.

Examples:
x =1
y =1:3

A = matrix(1:12, 4, 3)
engine_eval(~ sum(y), y = vy)
engine_eval(~ sum(x, y, A), x = x, y =y, A=A)
engine_eval(~ col_sums(A), A = A)
engine_eval(~ row_sums(A), A = A)
engine_eval(~ group_sums(x, f, n), X

1:10, f = rep(0:3, 1:4), n = c(1:4))

engine_functions 13

Extracting Matrix Elements:

Functions:
* x[1i,j] —Matrix containing a subset of the rows and columns of x.
e block(x,i,j,n,m) — Matrix containing a contiguous subset of rows and columns of x
https://eigen.tuxfamily.org/dox/group__TutorialBlockOperations.html
Arguments:
* x — Any matrix.
* i — An integer column vector (for [) or integer scalar (for block) containing the indices of
the rows to extract (for [) or the index of the first row to extract (for block).

* j — An integer column vector (for [) or integer scalar (for block) containing the indices of
the columns to extract (for [) or the index of the first column to extract (for block).

¢ n — Number of rows in the block to return.
¢ m— Number of columns in the block to return.

Return:

* A matrix containing a subset of the rows and columns in Xx.

Details:
Note that zero-based indexing is used so the first row/column gets index, 9, etc.
Examples:

engine_eval(~ A[c(3, 1, 2), 2], A = matrix(1:12, 4, 3))
engine_eval(~ block(x,i,j,n,m), x = matrix(1:12, 4, 3), i=1, j=1, n=2, m=2)

Accessing Past Values in the Simulation History:
For matrices with their simulation history saved, it is possible to bind the rows or columns of past
versions of such matrices into a single matrix.
Functions:
e rbind_lag(x, lag, t_min) — Bind the rows of versions of x that were recorded at the end
of all simulation iterations corresponding to time lags given by integers in lag.
e rbind_time(x, t, t_min) — Bind the rows of versions of x that were recorded at the end
of all simulation iterations corresponding to integers in t.
e chind_lag(x, lag, t_min) — Bind the columns of versions of x that were recorded at the
end of all simulation iterations corresponding to time lags given by integers in lag. (TODO
— cbind_lag is not developed yet)
e chind_time(x, t, t_min) — Bind the columns of versions of x that were recorded at the
end of all simulation iterations corresponding to integers in t. (TODO - cbind_lag is not
developed yet)

Arguments:

* x — Any matrix with saved history such that the number of columns (for rbind_x*) or rows
(for cbind_x*) does not change throughout the simulation.

e lag — Integer vector giving numbers of time steps before the current step to obtain past
values of x.

* t — Integer vector giving time steps at which to obtain past values of x.

e t_min — Integer giving the minimum time step that is allowed to be accessed. All time-steps
in t or implied by lag that are before t_min are ignored.

https://eigen.tuxfamily.org/dox/group__TutorialBlockOperations.html

engine_functions

Return:
* A matrix containing values of x from past times.

Time Indexing:

Get or update the index of the current or lagged time step or the index of the current time group.
A time group is a contiguous set of time steps defined by two change points.

Functions:

e time_step(lag): Get the time-step associated with a particular lag from the current time-
step. If the lagged time-step is less than zero, the function returns zero.

e time_group(index, change_points): Update the index associated with the current time
group. The current group is defined by the minimum of all elements of change_points
that are greater than the current time step. The time group index is the index associated
with this element. Please see the examples below, they are easier to understand than this
explanation.

e time_var(x, change_points): An improvement to time_group. Returns values in x at
time steps in change_points, return value remains constant between change_points.

Arguments:

e x: Column vector representing a time series. time_var will return the value of x corre-
sponding to element in change_points that contains the current time.

* lag: Number of time-steps to look back for the time-step to return.

* change_points: Increasing column vector of time steps giving the lower bound of each
time group.

Return:
A 1-by-1 matrix with the time-step lag steps ago, or with zero if t+1 < lag

Examples:
simple_sims(
iteration_exprs = list(x ~ time_step(0)),
time_steps = 10,
mats = list(x = empty_matrix)
)
sims = simple_sims(
iteration_exprs = list(
j ~ time_group(j, change_points),
time_varying_parameter ~ time_variation_schedule[j]

mats = list(
j=o0,
change_points = c(0, 4, 7),
time_variation_schedule = c(42, pi, sqrt(2)),
time_varying_parameter = empty_matrix
),
time_steps = 10,
)
set.seed(1L)
change_points = ¢(0,2,5)
x_val = rnorm(length(change_points))

engine_functions 15

simple_sims(
iteration_exprs = list(x ~ time_var(x_val,change_points))
, int_vecs = list(change_points = change_points)
, mats = list(x = empty_matrix, x_val=x_val)
, time_steps = 10

)

Convolution:
One may take the convolution of each element in a matrix, X, over simulation time using a kernel,
k. There are two arguments of this function.
Functions:
e convolution(x, k)

Arguments:
* x — The matrix containing elements to be convolved.
* k — A column vector giving the convolution kernel.
Return:

A matrix the same size as x but with the convolutions, ¥;;, of each element, z;;, given by the
following.

vij = Y @it = T)k(7)
7=0
unless ¢ < 7, in which case,

Yij =
where y;; is the convolution, x;;(¢) is the value of x;; at time step, ¢, k(7) is the value of the
kernel at lag, 7, and A is the length of the kernel.

Details:
If any empty matrices are encountered when looking back in time, they are treated as matrices
with all zeros. Similarly, any matrices encounte of x

Clamp:
Smoothly clamp the elements of a matrix so that they do not get closer to O than a tolerance, eps,
with a default of 1e-12. The output of the clamp function is as follows.
Functions:
e clamp(x, eps)
Arguments:
e x : A matrix with elements that should remain positive.

* eps : A small positive number giving the theoretical minimum of the elements in the re-
turned matrix.

Probability Densities:

All probability densities have the same first two arguments.
* observed
e simulated

engine_functions

The simulated argument gives a matrix of means for the observed values at which the densities
are being evaluated. Additional arguments are other distributional parameters such as the standard
deviation or dispersion parameter. All densities are given as log-densities, so if you would like
the density itself you must pass the result through the exp function.

If the simulated matrix or the additional parameter matrices have either a single row or single
column, these singleton rows and columns are repeated to match the number of rows and columns
in the observed matrix. This feature allows one to do things like specify a single common mean
for several values.

Functions:

* dpois(observed, simulated) — Log of the Poisson density based on this dpois TMB
function.

e dnbinom(observed, simulated, over_dispersion) — Log of the negative binomial den-
sity based on this dnbinom TMB function. To get the variance that this function requires
we use this expression, simulated + simulated*2/over_dispersion, following p.165 in
this book

e dnorm(observed, simulated, standard_deviation) — Log of the normal density based
on this dnorm TMB function.
Arguments:
* observed — Matrix of observed values at which the density is being evaluated.

¢ simulated — Matrix of distributional means, with singleton rows and columns recycled to
match the numbers of rows and columns in observed.

* over_dispersion— Over-dispersion parameter given by (simulated/standard_deviation)*2
- simulated).

* standard_deviation — Standard deviation parameter.

Pseudo-Random Number Generators:

All random number generator functions have mean as the first argument. Subsequent arguments
give additional distributional parameters. Singleton rows and columns in the matrices passed to
the additional distributional parameters are recycled so that all arguments have the same number of
rows and columns. All functions return a matrix the same shape as mean but with pseudo-random
numbers deviating from each mean in the mean matrix.

Functions:
¢ rpois(mean) — Pseudo-random Poisson distributed values.

* rnbinom(mean, over_dispersion) — Pseudo-random negative binomially distributed val-
ues.

¢ rnorm(mean, standard_deviation) — Pseudo-random normal values.

Arguments:
* mean — Matrix of means about which to simulate pseudo-random variation.

* over_dispersion—Matrix of over-dispersion parameters given by (simulated/standard_deviation)*2
- simulated).

* standard_deviation — Matrix of standard deviation parameters.

Assign:
Assign values to a subset of the elements in a matrix.

Functions:

https://kaskr.github.io/adcomp/group__R__style__distribution.html#gaa1ed15503e1441a381102a8c4c9baaf1
https://kaskr.github.io/adcomp/group__R__style__distribution.html#ga76266c19046e04b651fce93aa0810351
https://ms.mcmaster.ca/~bolker/emdbook/book.pdf
https://kaskr.github.io/adcomp/dnorm_8hpp.html

engine_functions 17

e assign(x, i, j, v)
Arguments:
* x — Matrix with elements that are to be updated by the values in v.
e i — Column vector of row indices pointing to the elements of x to be updated. These
indices are paired with those in v. If the length of i does not equal that of v, then it must

have a single index that gets paired with every element of v. Indices are zero-based, i=0
corresponds to the first row.

* j — Column vector of column indices pointing to the elements of x to be updated. These
indices are paired with those in v. If the length of j does not equal that of v, then it must
have a single index that gets paired with every element of v. Indices are zero-based, j=0
corresponds to the first column.

¢ v — Column vector of values to replace elements of x at locations given by i and j.
Return:
The assign function is not called for its return value, which is an empty_matrix, but rather to
modify x but replacing some of its components with those in v.
Examples:

X = matrix(1:12, 3, 4)
engine_eval(~ x + 1, x = x)

engine_eval(~ x + 1, x = x, .matrix_to_return = "x")
engine_eval(~ assign(x, 2, 1, 100), x = x, .matrix_to_return = "x")
engine_eval (~ assign(x
, ¢(2, 1, 0
, 0
, c(100, 1000, 10000)
), X = x, .matrix_to_return = "x")
Unpack:

Unpack elements of a matrix into smaller matrices.

Functions:
e unpack(x, ...)
Arguments:

* x — Matrix with elements to be distributed to the matrices passed through

e ... —Matrices with elements to be replaced by the values of elements in x in column-major
order. These matrices must be named matrices and not computed on the fly using expres-
sions. Note that even subsetting (e.g. unpack(x, y[@], y[3])) counts as an expression.
This use-case would require the assign function assign(y, c(@, 3), @, x).

Return:
The unpack function is not called for its return value, which is an empty_matrix, but rather to
modify the matrices in . . . by replacing at least some of its components with those in x.

Examples:

Here we fill a matrix with integers from 1 to 12 and then unpack them one-at-a-time into two
column vectors, x and y. By returning y we see the integers after the first three were used up by
X.

18

engine_eval (~unpack(matrix(1:12, 3, 4), x, y)

, X = rep(0, 3)
, ¥y = rep(1, 5)
, .matrix_to_return = "y"
)
Print Matrix:
Print out the value of a matrix.
Functions:
* print(x)
Arguments:

¢ x — Name of a matrix in the model.

Return:
An empty_matrix.

Examples:
simple_sims(
list(dummy ~ print(x), x ~ x / 2)
, time_steps = 10
, mats = list(x = 2)

finalizer

finalizer Finalizers

Description

Finalizers

Usage

finalizer_char(x)

finalizer_index(x)

Arguments

X Raw parsed expression.

Functions

e finalizer_char(): Finalize parsed expression so that the parse table is a little more human

readable.

e finalizer_index(): Finalize parsed expression so that the parse table can be passed to the

C++ engine.

find_all_paths 19

find_all_paths Find all Paths

Description

Find all paths through a compartmental model.

Usage

find_all_paths(edges_df, start_node_guesses = character(@L))

Arguments

edges_df A data frame with a from and a to column.

start_node_guesses
Optional guesses for nodes that start paths. This is useful for models that are not
directed acyclic graphs (DAGs).

Value

List of character vectors of state variable names, each vector describing a path through the model.

fit_distr_params Fitting Distributional Parameters

Description

Distributional parameters can be added to the list of parameters that are fit during calibration. By
default, distributional parameters in priors and likelihoods are not fit. Use mp_nofit to exclude
distributional parameters from being fit and mp_fit to fit them.

Usage

mp_fit(x, trans = DistrParamTransDefault())

mp_nofit(x, trans = DistrParamTransDefault())

Arguments
X numeric starting value of the distributional parameter to fit, or character name
of an existing variable in the model with a default starting value to use.
trans transformation to apply to the distributional parameter. By default, distributional

parameters inherit a default transformation from the associated distribution. For
example, the standard deviation parameter sd in the mp_normal distributions has
a default log transformation specified using mp_log.

20 fit_distr_params

Value

A distributional parameter object.

Examples

First we call the SIR model spec, and generate some data for calibration.
spec = mp_tmb_library("”starter_models”, "sir", package = "macpan2")
data = mp_simulator(spec, 50, "infection”) |> mp_trajectory()

Suppose we want to specify a Normal prior on the transmission parameter
beta, and we are interested in estimating the prior standard deviation.
Here we use “mp_fit~ to estimate the standard deviation, “sd”, and we
provide a numeric starting value for “sd™ in the optimization.
cal = mp_tmb_calibrator(
spec

, data

, traj = "infection”

, par = list(beta = mp_normal(location = 0.35, sd = mp_fit(0.1)))

, default = list(beta = 0.25)

When viewing the calibration objective function we can see the additional
prior density term added for beta. The standard deviation parameter has
been automatically named 'distr_params_log_sd_beta'.
cal$simulator$tmb_modelobj_fnobj_fn_expr

Next we optimize and view the fitted parameters. We can see the

distributional parameter in the coefficient table with a default value
equal to the numeric value we provided to “mp_fit™ above.
mp_optimize(cal)

mp_tmb_coef(cal)

If instead we want control over the name of the new fitted distributional
parameter, we can add a new variable to our model specification with the
default value set to the desired optimization starting value.
updated_spec = spec |> mp_tmb_insert(default = list(sd_var = 0.1))

In the calibrator, we use the name of this newly added variable, "sd_var”,
as input to “mp_fit~.
cal = mp_tmb_calibrator(
updated_spec

, data

, traj = "infection”

, par = list(beta = mp_normal(location = ©0.35, sd = mp_fit("sd_var")))

, default = list(beta = 0.25)

We can see this distributional parameter get propogated to the objective
function and the fitted parameter table.
cal$simulator$tmb_modelobj_fnobj_fn_expr

mp_optimize(cal)

mp_tmb_coef(cal)

initial valid_vars 21

initial_valid_vars Initial Valid Variables

Description

Initial Valid Variables

Usage

initial_valid_vars(valid_var_names)

Arguments

valid_var_names
Character vector of variable names.

LedgerDefinition Ledgers

Description

A ledger is a table with rows that identify specific instances of a functional form used to define
a mp_dynamic_model. Ledgers are most commonly created using the mp_join function as in the
following example.

age = mp_index(Age = c("young"”, "old"))

state = mp_cartesian(
mp_index(Epi = c("S", "I", "R")),
age

)

mp_join(
from = mp_subset(state, Epi = "S"),
to = mp_subset(state, Epi = "I"),
by = list(from.to = "Age")

)

#> from to

#> S.young I.young

#> S.old I.old

22 make_expr_parser

make_expr_parser Generate an Arithmetic Expression Parser

Description

Generate an Arithmetic Expression Parser

Usage

make_expr_parser(parser_name = NULL, finalizer = force)

Arguments

parser_name Name of the parsing function as a character string. No longer used, but still
present for back-compatibility.

finalizer Function used to post-process a parsed formula. The default is the identity final-
izer, which returns the parsed formula itself. Other good choices are finalizer_char,
which can be used to understand how the formula has been parsed, and finalizer_index,
which can be passed to the C++ engine.
The result of this function is another function that takes a single argument, x.
This resulting function is recursive. The x argument should be a one-sided for-
mula the first time this recursive function is called. In subsequent evaluations of
the recursion, x will be a list with the following structure. When x is a formula,
it must contain a named list of functions called valid_funcs and a named list
of variables called valid_vars.

x list of names and numeric objects that represent each leaf of the parse tree

n integer vector the same length as x that give the number of arguments of the
associated functions in x or @ otherwise

i index identifying the element of x corresponding to the first argument of the
associated function or @ if this is not a function

valid_funcs named list of valid functions that was extracted from the environ-
ment of the formula being parsed

valid_vars named list of default values of valid variables extracted from the
environment of the formula being parsed
input_expr_as_string the input formula stored as a string

Examples

parser = make_expr_parser(finalizer = finalizer_char)

foi = ~ beta * I / 100

valid_funcs = setNames(
list(C*~, ~/7),
c("x", /")

)

valid_vars = list(beta = 0.1, I = 30)
parser(foi)

mp_aggregate 23

mp_aggregate Aggregate an Index

Description
Create a one-column ledger (see LedgerDefinition) with rows identifying instances of an aggre-
gation.

Usage

mp_aggregate(index, by = "Group”, ledger_column = "group")

Arguments
index An index to aggregate over.
by A column set label to group by. By default a dummy and constant "Group”

column is created.

ledger_column Name of the column in the output ledger that describes the groups.

See Also

Other functions that return ledgers mp_join()

mp_cartesian Cartesian Product of Index Tables

Description
Produce a new index table by taking all possible pairwise combinations of the input tables. This is
useful for producing product models that expand model components through stratification.

Usage

mp_cartesian(...)

Arguments

Index tables (see mp_index).

See Also

Other functions that return index tables mp_index (), mp_rename (), mp_subset (), mp_union()

Other functions that take products of index tables and return one index tables mp_linear (), mp_square(),
mp_symmetric(), mp_triangle()

24 mp_default

Examples

mp_cartesian(
mp_index(Epi = c("S", "I")),
mp_index(Age = c("young"”, "old"))
)

si = mp_index(Epi = c("S", "I"))
age = mp_index(Age = c("young”, "old"))

loc = mp_index(City = c("hamilton”, "toronto"))
vax = mp_index(Vax = c("unvax”", "vax"))
(si

|> mp_cartesian(age)
|> mp_cartesian(loc)
|> mp_cartesian(vax)

)

flow_rates = mp_index(Epi = c("infection”, "recovery"))
mp_union(
mp_cartesian(
mp_subset(flow_rates, Epi = "infection"),
age
),
mp_subset(flow_rates, Epi = "recovery”)

)

mp_default Default Values

Description

Default Values

Usage
mp_default(model)

mp_default_list(model)

Arguments

model A model object from which to extract default values.

Value

A long-format data frame with default values for matrices required as input to model objects. The
columns of this output are matrix, row, col, and value. Scalar matrices do not have any entries in
the row or col columns.

mp_dynamic_model 25

Functions

e mp_default_list(): List of the default variables as matrices.

mp_dynamic_model Dynamic Model

Description

This is an ’old” model specification function that was tested out at a workshop. Currently it still

drives the engine-agnostic-grammar vignette, but we plan to replace this function with mp_tmb_model_spec
and other model specification functions.

Usage

mp_dynamic_model (
expr_list = ExprList(),
ledgers = list(),
init_vecs = list(),
unstruc_mats = list()

)
Arguments
expr_list Expression list.
ledgers Ledgers.
init_vecs Initial structured vectors.

unstruc_mats Initial unstructured matrices.

mp_dynamic_simulator TMB Simulator from Dynamic Model

Description

This is an ’old’ function that was tested out at a workshop. Currently it still drives the engine-
agnostic-grammar vignette, but we plan to replace this function with mp_simulator.

26 mp_dynamic_simulator

Usage

mp_dynamic_simulator(
dynamic_model,
time_steps = 0oL,
vectors = NULL,
unstruc_mats = NULL,
mats_to_save = NULL,
mats_to_return = NULL,
params = OptParamsList(0),
random = OptParamsList(),
obj_fn = ObjectiveFunction(~0),
log_file = LogFile(),
do_pred_sdreport = TRUE,
tmb_cpp = "macpan2”,
initialize_ad_fun = TRUE,

Arguments

dynamic_model Object product by mp_dynamic_model.
time_steps Number of time steps to simulate.

vectors Named list of named vectors as initial values for the simulations that are refer-
enced in the expression list in the dynamic model.

unstruc_mats = Named list of objects that can be coerced to numerical matrices that are used
in the expression list of the dynamic model.

mats_to_save TODO

mats_to_return TODO

params TODO
random TODO
obj_fn TODO
log_file TODO
do_pred_sdreport
TODO
tmb_cpp TODO
initialize_ad_fun
TODO

TODO

mp_effects_descr 27

mp_effects_descr Describe Statistical Effects

Description

Additional information that can be joined to the output of the tidy.TMB or tidy.stanfit functions
in the broom.mixed package.

Usage

mp_effects_descr(model)

mp_add_effects_descr(coef_table, model)

Arguments
model A model in the TMB engine that can be used to compute tables of statistical
effects.
coef_table Coefficient table that was probably generated using mp_tmb_coef or mp_tmbstan_coef,
but also perhaps generated directly using the tidy.TMB or the tidy.stanfit
methods in the broom.mixed package.
Functions

* mp_add_effects_descr(): Convenience function for adding coefficient descriptions from a
calibrated model to coef_tables generated by mp_tmb_coef or mp_tmbstan_coef.

mp_euler State Updates

Description

Use these functions to update a model spec so that the state variables are updated according to
different numerical methods.

Usage
mp_euler (model)
mp_rk4(model)
mp_euler_multinomial (model)

mp_hazard(model)

28 mp_euler

Arguments

model Object with quantities that have been explicitly marked as state variables.

Details

The default update method for model specifications produced using mp_tmb_model_specis mp_euler.
This update method yields a difference-equation model where the state is updated once per time-step
using the absolute flow rate as the difference between steps.

These state update functions are used to modify a model specification to use a particular kind of
state update. To see these modified models for a particular example one may use the mp_expand
function (see examples).

Functions

* mp_rk4(): ODE solver using Runge-Kutta 4. Any formulas that appear before model flows in
the during list will only be updated with RK4 if they do contain functions in getOption("macpan2_non_iterable_ful
and if they do not make any state variable assignments (i.e., the left-hand-side does not contain
state variables). Each formula that does not meet these conditions will be evaluated only once
at each time-step before the other three RK4 iterations are taken. By default, the time_var
function and functions that generate random numbers (e.g., rbinom) are not iterable. Func-
tions that generate random numbers will only be called once with state update methods that
do not repeat expressions more than once per time-step (e.g., mp_euler), and so repeating
these functions with RK4 could make it difficult to compare methods. If you really do want
to regenerate random numbers at each RK4 iteration, you can do so by setting the above
option appropriately. The time_var function assumes that it will only be called once per
time-step, and so it should never be removed from the list of non-iterable functions. Although
in principle it could make sense to update state variables manually, it currently causes us to
be confused. We therefore require that all state variables updates are set explicitly (e.g., with
mp_per_capita_flow) if any are explicit.

e mp_euler_multinomial(): Update state with process error given by the Euler-multinomial
distribution.

» mp_hazard(): Update state with hazard steps, which is equivalent to taking the step given by
the expected value of the Euler-multinomial distribution.

Examples
sir = mp_tmb_library("starter_models”, "sir"”, package = "macpan2")
sir
sir |> mp_euler() |> mp_expand()
sir |> mp_rk4() |> mp_expand()

sir |> mp_euler_multinomial() |> mp_expand()

mp_expand 29

mp_expand Expand Model

Description

Expand a structured model so that it is represented in an unstructured format requiring a more
verbose description. Currently, this is only applicable for mp_tmb_model_spec objects that have
explicit flows (e.g. mp_per_capita_flow). For such models, mp_expand produces a model with
expression lists composed entirely of plain R formulas.

Usage

mp_expand(model)

Arguments

model A model object.

Examples

n

sir = mp_tmb_library("starter_models”,
print(sir)
print(mp_expand(sir))

sir"”, package = "macpan2")

mp_extract Extract Index

Description
Extract the index for a particular dimension in a ledger from a ledger or from an object containing
one or more ledgers.

Usage

mp_extract(x, dimension_name)

Arguments

X Object

dimension_name Name of a dimension used in a ledger.

30 mp_final

mp_factors Factor an Index

Description

Factor an Index

Usage
mp_factors(index, unpack = c("no”, "maybe”, "yes"))
Arguments
index An index to be factored.
unpack Place factors in the global environment?
mp_final Final Values
Description

Return the values of variables after the simulation loop has finished and the final set of expressions
have been evaluated.

Usage

mp_final (model)

mp_final_list(model)

Arguments

model Object that can be used to simulate.

Functions

e mp_final_list(): Final values formatted as a list of matrices.

mp_flow_frame 31

mp_flow_frame Flow Frame (experimental)

Description

Get a data frame representing the flows in a model specification.

Usage

mp_flow_frame(spec, topological_sort = TRUE, loops = "*$")

Arguments

spec A mp_tmb_model_spec.

topological_sort
Should the states be topologically sorted to respect the main direction of flow?

loops Pattern for matching the names of flows that make the flow model not a DAG,
which is a critical assumption when topologically sorting the order of states and
flows in the output. This is only relevant if topological_sort is used.

Value

A data frame that gives information provided in calls to mp_per_capita_flowand mp_per_capita_inflow.

mp_group Group an Index

Description

Create a new index with fewer columns to create names for an aggregated vector that is labelled by
the input index.

Usage
mp_group(index, by)

Arguments

index Index to group rows.

by Column set label to group by.

32

mp_index

mp_index

Model Quantity Index Table

Description

Make an index table to enumerate model quantity labels by category. These objects generalize and
wrap data. frames, where each column is a label category and each row is an index. Indices must
contain only letters, numbers, and underscores. Blank empty string entries are allowed, but missing

values (NAs) are not.

Usage

mp_index (..., labelling_column_names)

S3 method for
print(x, ...)

S3 method for
names(x)

S3 method for

labelling_column_

S3 method for
labels(object,

Arguments

class 'Index'

class 'Index'

class 'Index'

names (x)

class 'Index'

.2

Character vectors to combine to produce an index. Alternatively, any number of
data frames of character-valued columns. If data frames are supplied, their rows
will be bound and the result converted to an index if possible.

labelling_column_

names

A character vector of the names of the index that will be used to label the
model components (i.e. rows) being described. The 1abelling_column_names
cannot have duplicates and must contain at least one name. The index given
by the labelling_column_names must uniquely identify each row. The default
NULL gives the set of columns, in order starting with the first column, that are
required to uniquely identify each row.

X An index.
object An index.
Details

For example, the following index table describes the state variables of the model:

mp_index 33

sir = mp_index(Epi = c("S", "I", "R"))

print(sir)
#> Epi
#> S
#> I
#> R

Here, the column Epi denotes that the category of these labels is epidemiological. There is nothing
special about this specific choice of category name; we could have also used another name like
Compartment.

However, in more complicated models, it is good to think carefully about choosing descriptive
category names. For example, in an age-structured SIR model, we could add an Age column to
generate an index table as follows:

sir_age = mp_index(

Epi = rep(c(”S", "I", "R"), 2),
Age = rep(c("young”, "old"), each = 3)
)

print(sir_age)

#> Epi Age

#> S young

#> I young

#> R young

#> S old

#> I old

#> R old

Here, having the first column in the index table labeled Compartment would be somewhat mislead-
ing, as the compartments aren’t actually just "S", "I", and "R", they are each of the epidemiological
states stratified by the age groups "young" and "old".

This index table could also be generated by first specifying individual index tables for the Epi and
Age columns, and then using a macpan2 product function that combines the tables into a single
index table:

sir = mp_index(Epi c("s", "1", "R™))
age = mp_index(Age = c("young"”, "old"))
prod = mp_cartesian(sir, age)

prod

#> Epi Age

#> S young

#> I young

#> R young

#> S old

#> I old
#> R old

The mp_cartesian() function will produce a table with entries that are all possible combinations
of the individual index tables. The "See Also" section of the mp_cartesian() help page catalogues
all available product functions.

34

mp_initial

We can produce the full labels of model quantities, which are simply dot-concatenated indices, one
for each entry in the index table, using the labels() function:

#> [1] "S.young” "I.young" "R.young" "S.old" "I.old" "R.old"

Dots are not allowed in indices so that the labels can be inverted to reproduce the original index
table (provided that the column names can be retrieved).

It is recommended to use UpperCamelCase for the columns of index tables and single uppercase
characters ("S", "I"), all lowercase character strings ("gamma"), and/or snake_case strings ("ag-
ing_rate") for indices. This convention helps when reading code that contains references to both
column names and indices.

Functions

e print(Index): Print an index.
e names(Index): Get the names of the columns of an index.

e labelling_column_names(Index): Retrieve the labelling_column_names of an index.
These are the names of the columns that are used to label the model components.

* labels(Index): Convert an index into a character vector giving labels associated with each
model component (i.e. row) being described.

See Also

mp_structured_vector()
mp_set_numbers()

Other functions that return index tables mp_cartesian(), mp_rename (), mp_subset (), mp_union()

Examples

state = mp_index(
Epi = c("S", "I", "S", "I"),
Age = c("young", "young", "old"”, "old")
)
print(state)
labels(state)
mp_cartesian(state, mp_index(City = c("hamilton”, "toronto")))

mp_initial Initial Values

Description

Return a data frame containing the values of variables at the end of the before phase, right before
the simulation loop begins (i.e. right before the during phase).

mp_join 35

Usage

mp_initial(model)

mp_initial_list(model)

Arguments
model A model specification object or model simulator object from which to extract
initial values.
Value

A long-format data frame with initial values for matrices. The columns of this output are matrix,
time, row, col, and value. Scalar matrices do not have any entries in the row or col columns. The
before phase corresponds to a time value of 0.

Functions

e mp_initial_list(): List of the initial variables as matrices.

mp_join Join Indexes

Description

Join two or more index tables (see mp_index) to produce a ledger (see LedgerDefinition).

Usage
mp_join(..., by = empty_named_list())
Arguments
Named arguments giving indexes created by mp_index or another function that
manipulates indexes. Each argument will become a position vector used to sub-
set or expand numeric vectors in archetype formulas.
by What columns to use to join the indexes. See below on how to specify this
argument.
Details
When two index tables are passed to . .., mp_join behaves very much like an ordinary inner join.
When more than two tables are passed to . .., mp_join iteratively joins pairs of tables to produce

a final ledger. For example, if index tables A B, and C are passed to mp_join, an inner join of A
and B is performed and the result is joined with C. In each of these successive internal joins. The
properties of inner joins ensures that the order of tables does not affect the set of rows in the final
table (SW states without proof!).

https://en.wikipedia.org/wiki/Join_(SQL)

36

mp_join

When two index tables are passed to . . ., the by argument is just a character vector of column names
on which to join (as in standard R functions for joining data frames), or the dot-concatenation of
these column names. For example,

state = mp_index(

Epi = C(HSII’ IIIII, Ils”’ IIIII)’

Age = C(“young”, nyoungu’ "Old", ”Old”)
)
mp_join(

from = mp_subset(state, Epi = "S"),
to = mp_subset(state, Epi = "I"),
by = "Age"

)

#> from to

#> S.young I.young

#> S.old I.old

If there are more than two tables then the by argument must be a named list of character vectors,
each describing how to join the columns of a pair of tables in The names of this list are
dot-concatenations of the names of pairs of tables in For example,

rates = mp_index(

Epi = c("lambda”, "lambda"),
Age - C(”young”, "Old")

)

mp_join(

from = mp_subset(state, Epi = "S"),
to = mp_subset(state, Epi = "I"),
rate = mp_subset(rates, Epi = "lambda"),

by = list(
from.to = "Age",
from.rate = "Age"
)
)
#> from to rate

#> S.young I.young lambda.young
#> S.old 1I.old 1lambda.old

If the by columns have different names in two tables, then you can specify these using formula
notation where the left-hand-side is a dot-concatenation of columns in the first table and the right-
hand-side is a dot-concatenation of the columns in the second table. For example,

contact = mp_index(
AgeSusceptible = c("young"”, "young”, "old", "old"),
AgeInfectious = c("young”, "old"”, "young”, "old")

)

mp_join(
sus = mp_subset(state, Epi = "S"),

mp_labels 37

inf = mp_subset(state, Epi = "I"),
con = contact,

by = list(
sus.con = "Age" ~ "AgeSusceptible”,
inf.con = "Age" ~ "Agelnfectious”
)
)
#> sus inf con

#> S.young I.young young.young
#> S.old I.young old.young
#> S.young I.old young.old
#> S.old I.old old.old

See Also

Other functions that return ledgers mp_aggregate ()

mp_labels Index Labels

Description

Return a character vector of labels for each row of an index (or a ledger?? FIXME: what does this
mean for ledgers??).

Usage

mp_labels(x, labelling_column_names)

Arguments

X Object

labelling_column_names
What index columns should be used for generating the labels. If missing then
defaults will be used. (FIXME: clarify how the defaults are used.)

mp_layout_grid Flow Diagram Grid Layout

Description

Create a grid on which to layout the flow diagram of a model specification.

38

mp_layout_paths

Usage
mp_layout_grid(
spec,
east = "",
south = "*$",
north = "*$",
west = "*$",
loops = north,
X_gap = 0.3,
y_gap = 0.3,
north_south_sep = 0,
east_west_sep = 0,
trim_states = character()
)
Arguments
spec A model specification made with mp_tmb_model_spec or related function.
east Regular expression for matching the names of flows that will be connected east-
ward in the layout.
south Regular expression for matching the names of flows that will be connected
southward in the layout.
north Regular expression for matching the names of flows that will be connected
northward in the layout.
west Regular expression for matching the names of flows that will be connected west-
ward in the layout.
loops Regular expression for matching the names of flows that cause loops in the flow
model, and so should be ignored when building the layout.
X_gap Size of the gap to the left and right of the 1-by-1 space provided for a node.
y_gap Size of the gap above and below the 1-by-1 space provided for a node.
north_south_sep
Horizontal separation between north and south flow arrows.
east_west_sep Vertical separation between east and west flow arrows.
trim_states List of states to remove from the diagram
mp_layout_paths Flow Diagram Grid Layout
Description

Layout the flow diagram of a model specification so that each row is one of the paths through the

model (ignoring loops).

mp_ledgers 39

Usage

mp_layout_paths(
spec,
sort_paths = TRUE,
combine_columns = TRUE,
deduplicate_edges = TRUE,

loops = "*$",
ignore = "*$",
X_gap = 0.3,
y_gap = 0.3,

north_south_sep = 0,
east_west_sep = 0,
trim_states = character()

)

Arguments
spec A model specification made with mp_tmb_model_spec or related function.
sort_paths Should the paths/rows be sorted to minimize the number times an edge must go

through a node that it is not connected with?
combine_columns
Should each state/node get its own column in the layout (FALSE) or should the
algorithm try to place branching states in the same column (TRUE, default).
deduplicate_edges
Should each row have all of the edges in the path or should duplicate edges be
removed?

loops Regular expression for matching the names of flows that cause loops in the flow
model, and so should be ignored when building the layout.

ignore Regular expression for matching the names of flows that should be removed
from the layout analysis entirely. These will be isolated in a data frame for
custom drawing of ’difficult’ edges.
X_gap Size of the gap to the left and right of the 1-by-1 space provided for a node.
y_gap Size of the gap above and below the 1-by-1 space provided for a node.
north_south_sep
Horizontal separation between north and south flow arrows.

east_west_sep Vertical separation between east and west flow arrows.

trim_states List of states to remove from the diagram
mp_ledgers Bundle up Ledgers
Description

Bundle up several ledgers (see LedgerDefinition) to pass to mp_dynamic_model.

40 mp_lookup

Usage

mp_ledgers(...)

Arguments
Ledgers to bundle up.
mp_linear Linear Chain Product
Description

TODO: what does this mean?

Usage

mp_linear(x, y_labelling_column_names)

Arguments
X An index.
y_labelling_column_names
TODO
See Also

Other functions that take products of index tables and return one index tables mp_cartesian(),
mp_square(), mp_symmetric(), mp_triangle()

mp_lookup Lookup

Description
Lookup a subset or factor index associated with a symbol, and return the index associated with that
symbol.

Usage

mp_lookup(index, symbol)

Arguments
index Index table (see mp_index).
symbol Character string that could possibly be associated with a subset or factor of

index.

mp_model_starter 41

mp_model_starter Model Starter

Description

Create a directory with a template model definition.

Usage

mp_model_starter(starter_name, dir)

Arguments

starter_name Currently can only be sir.

dir String giving the path to a directory for copying the template model definition.
mp_optimize Optimize
Description
Optimize
Usage
mp_optimize(model, optimizer, ...)

S3 method for class 'TMBCalibrator'

mp_optimize(model, optimizer = c("nlminb”, "optim”), ...)
Arguments
model A model object capable of being optimized. See below for model types that are
supported.
optimizer Name of an implemented optimizer. See below for options for each type of
model.

Arguments to pass to the optimizer.

Value

The output of the optimizer. The model object is modified and saves the history of optimization
outputs. These outputs can be obtained using mp_optimizer_output.

Methods (by class)

* mp_optimize(TMBCalibrator): Optimize a TMB calibrator.

42 mp_par

mp_optimizer_output Optimizer Output

Description

Get the output from an optimizer used in model calibration.

Usage

mp_optimizer_output(model, what = c("latest”, "all"))

Arguments
model An object that has been optimized.
what A string indicating whether to return the results of the "latest” optimization
attempt or a list with "all” of them.
Details

When objects created by mp_tmb_calibrator are successfully passed to mp_optimize, they build
up an optimization history. This history is recorded as a list of the output produced by the underlying
optimizer (e.g. nlminb). This mp_optimizer_output function returns the latest output by default
or the entire history list.

mp_par Fit Parameters

Description

Define the prior distributions for parameters and random effects to be passed to par argument of
the mp_tmb_calibrator function.

Usage

mp_par (param, random)

Arguments

param Named list of distributional specifications for the fixed effects.

random Named list of distributional specifications for the random effects.

mp_per_capita_flow 43

mp_per_capita_flow Flow

Description

Specify different kinds of flows between compartments.

Usage

mp_per_capita_flow(from, to, rate, abs_rate = NULL)

mp_per_capita_inflow(from, to, rate, abs_rate = NULL)

mp_per_capita_outflow(from, rate, abs_rate = NULL)

mp_absolute_flow(from, to, rate, rate_name = NULL)

Arguments
from String giving the name of the compartment from which the flow originates.
to String giving the name of the compartment to which the flow is going.
rate String giving the expression for the per-capita or absolute flow rate. Alterna-
tively for per-capita flows, and for back compatibility, a two-sided formula with
the left-hand-side giving the name of the absolute flow rate per unit time-stepand
the right-hand-side giving an expression for the per-capita rate of flow from from
to to.
abs_rate String giving the name for the absolute flow rate, which will be computed as
from* rate. If a formula is passed to rate (not recommended), then this
abs_rate argument will be ignored.
rate_name String giving the name for the absolute flow rate.
Details

The examples below can be mixed and matched in mp_tmb_model_spec() to produce compart-
mental models. Note that the symbols used below must be used in an appropriate context (e.g., if
N is used for total population size, then there must be an expression like N~ S + I + R somewhere
in the model or for models with constant population size there must be a default variable, N, with a
numerical value).

Functions

* mp_per_capita_inflow(): Only flow into the to compartment, and do not flow out of the
from compartment. The from compartment can even be a function of a set of compartments,
because it will not be updated. A common construction is mp_per_capita_inflow("N",
"S", "birth_rate"”, "birth") for adding a birth process, which involves the total popula-
tion size, N, rather than a single compartment.

44 mp_positions

* mp_per_capita_outflow(): Only flow out of the from compartment, without going any-
where. This is useful for removing individuals from the system (e.g., death). To keep track
of the total number of dead individuals one can use mp_per_capita_flow and set to to be a
compartment for these individuals (e.g., to = "D").

* mp_absolute_flow(): Experimental

Examples

infection by mass action
https://github.com/canmod/macpan2/blob/main/inst/starter_models/si
mp_per_capita_flow("S", "I", "beta x I / N", "infection")

recovery
https://github.com/canmod/macpan2/blob/main/inst/starter_models/sir
mp_per_capita_flow("I", "R", "gamma", "recovery")

disease progression with different severity
https://github.com/canmod/macpan2/blob/main/inst/starter_models/macpan_base

mp_per_capita_flow("E", "I_mild"”, "alpha * phi” , "progression_mild")
mp_per_capita_flow("E", "I_sev" , "alpha * (1 - phi)", "progression_sev")
birth

https://github.com/canmod/macpan2/blob/main/inst/starter_models/sir_demog
mp_per_capita_inflow("N", "S", "nu", "birth")

death

https://github.com/canmod/macpan2/blob/main/inst/starter_models/sir_demog
mp_per_capita_outflow(”S", "mu”, "death_S")

mp_per_capita_outflow("I", "mu”, "death_I")

mp_per_capita_outflow("R", "mu”, "death_R")

vaccination
https://github.com/canmod/macpan2/blob/main/inst/starter_models/shiver
mp_per_capita_flow("S", "V", "((a * S)/(b + S))/S", '"vaccination")

importation (experimental)
mp_absolute_inflow("I", "delta”, "importation")

mp_positions Position Vectors

Description
Return an integer vector of positions of x in table. Currently this is a simple wrapper around
match.

Usage

mp_positions(x, table, zero_based = TRUE)

mp_rbf 45

Arguments
X Character vector
table Character vector
zero_based Use zero-based indexing? Defaults to TRUE, otherwise standard R one-based
indexing is used.
mp_rbf Fit a Time-Varying Parameter with Radial Basis Functions
Description

Pass the output of this function to the tv argument of mp_tmb_calibrator to model time variation
of a parameter with flexible radial basis functions.

Usage

mp_rbf(
tv,
dimension,
initial_weights,
seed,
prior_sd = 1,
fit_prior_sd
sparse_tol =

= RUE
0.0

Arguments

tv String giving the name of the parameter.

dimension Number of bases.

initial_weights
Optional vector with dimensions elements. These are the parameters that are
fitted and determine how tv varies with time.

seed Optional random seed to use to generate the initial_weights if they are not
provided.

prior_sd Prior standard deviation default value for radial basis function coefficients, de-
faults to 1.

fit_prior_sd Should the prior sd be be fitted.

sparse_tol Tolerance below which radial basis function outputs are set exactly to zero.
Small values are more accurate but slower. Lack of accuracy can be visually
apparent as jumps in graphs of the time-varying parameter.

46 mp_reference

mp_reduce Reduce Model

Description

Reduce a model by removing any model structure (e.g. mp_per_capita_flow), so that expression
lists are plain R formulas.

Usage

mp_reduce (model)

Arguments
model A model object.
mp_reference Reference Index
Description

Extract the index used as a reference for generating position vectors.

Usage

mp_reference(x, dimension_name)

Arguments

X Object

dimension_name Name of a dimension used in a ledger if applicable.

mp_rename 47

mp_rename Rename Index Columns

Description

Rename Index Columns

Usage
mp_rename(x, ...)
Arguments
X An index with columns to be renamed.
Name-value pairs. The name gives the new name and the value is a character
vector giving the old name.
See Also

Other functions that return index tables mp_cartesian(), mp_index(), mp_subset (), mp_union()

mp_simulator Simulator

Description

Construct a simulator from a model specification object.

Usage

mp_simulator(model, time_steps, outputs, default = list())

Arguments
model A model specification object.
time_steps How many time steps should be simulated when simulations are requested?
outputs Character vector of names of model quantities that will be outputted when sim-
ulations are requested.
default Named list of numerical objects that will update the default values defined in the

model specification object. Any number of objects can be updated or not.

48 mp_slices

mp_sim_bounds Simulation Bounds (Experimental)

Description

Set the simulation bounds (start time and end time) for a calibration. This is used to override the
default simulation bounds taken from the observed data passed to mp_tmb_calibrator. the first
date is when the first simulated time step (chosen to be before the first data point so that infectious
individuals can be built up) and the second date is the last simulated time step (chosen to be after
the last data point so that there can be a forecast period). the last argument gives the scale of a single
time step (in this case it should always be daily).

Usage

mp_sim_bounds(sim_start, sim_end, time_scale)

Arguments
sim_start Start time of each simulation.
sim_end End time of each simulation.
time_scale Qualitative description of the size of a time step. currently only "steps”, "daily”,
and "weekly" are allowed, and but "steps” is the only recommended version
as the other two are poorly tested and will throw a warning. The recommended
"steps” option assumes that positive integers are used to indicate a particular
point in the simulation.
mp_slices Slice an index
Description

Slice an index

Usage

mp_slices(index, unpack = c("no"”, "maybe", "yes"))
Arguments

index Index to slice up.

unpack Place factors in the global environment?

mp_square 49

mp_square Self Cartesian Product

Description

Self Cartesian Product

Usage

mp_square(x, suffixes = c("A", "B"))

Arguments
X An index.
suffixes Length-2 character vector giving suffixes that disambiguate the column names
in the output.
See Also

Other functions that take products of index tables and return one index tables mp_cartesian(),
mp_linear (), mp_symmetric(), mp_triangle()

mp_state_dependence_frame
State Dependence Frame

Description

Data frame giving states that per-capita flow rates directly depend on. This is intended for plotting
diagrams and not for mathematical analysis, in that it does not describe indirect dependence for
flow rates on state variables.

Usage

mp_state_dependence_frame(spec)

Arguments

spec Model specification from spec.

50 mp_structured_vector

mp_state_vars State Variables

Description

Get the state variables in a model specification.

Usage

mp_state_vars(spec)

Arguments

spec Model specification (mp_tmb_model_spec).

Value

Character vector of names of all state variables that have been explicitly represented in the model
using functions like mp_per_capita_flow.

mp_structured_vector Structured Vectors

Description

This documentation was originally in mp_index() and should be cleaned up See issue #131. Also
this is an experimental feature.

Usage
mp_structured_vector(x, ...)
mp_set_numbers(vector, ...)
Arguments
X An index.
Passed on to S3 methods.
vector An index.
Functions

e mp_set_numbers(): Update numerical values of a structured vector. TODO: details on syn-
tax.

mp_subset 51

Examples

state = mp_index(
Epi C(”S”, IIIH’ IISII’ llIH),
Age = c("young"”, "young", "old", "old")
)
state_vector = (state
|> mp_structured_vector()
|> mp_set_numbers(Epi = c(S
|> mp_set_numbers(Epi = c(I

1000))
1), Age = "old")

)

print(state_vector)

mp_subset Subset of Indexes

Description

Take a subset of the rows of an index table (see mp_index) to produce another index table. The
mp_subset function gives rows that match a certain criterion and mp_setdiff gives rows that do
not match.

Usage

mp_subset(x, ...)

mp_setdiff(x, ...)

Arguments
X Model index.
Name-value pairs. The names are columns (or sets of columns using dot-concatenation)
in x and the values are character vectors that refer to labels with respect to those
columns. These values determine the resulting subset.
See Also

Other functions that return index tables mp_cartesian(), mp_index (), mp_rename (), mp_union()

52 mp_time_scale

mp_symmetric Symmetric Self Cartesian Product

Description

Symmetric Self Cartesian Product

Usage

mp_symmetric(x, y_labelling_column_names, exclude_diag = TRUE)

Arguments
X An index.
y_labelling_column_names

TODO

exclude_diag Should *diagonal’ commponents be excluded from the output.

See Also

Other functions that take products of index tables and return one index tables mp_cartesian(),
mp_linear (), mp_square(), mp_triangle()

mp_time_scale Time Scale

Description

Time Scale
Usage

mp_time_scale(start, end, time_step_scale = c("steps”, "daily", "weekly"), ...)
Arguments

start First date or time in the first time step

end Last date or time in the last time step

time_step_scale
TODO

TODO

mp_tmb 53

mp_tmb Get Underlying TMB Object

Description

Get the result of TMB: :MakeADFun underlying a TMB-based model in macpan2.

Usage

mp_tmb(model)

Arguments
model An object based on TMB.
mp_tmbstan_coef Model Coefficient Table with stan
Description

Leverages the tmbstan and broom.mixed packages to generate MCMC-based coefficient tables.

Usage
mp_tmbstan_coef (model, tmbstan_args = list(), ...)
Arguments
model Object that contains information about model coefficients.

tmbstan_args Arguments to pass on to tmbstan, which is used to generate an rstan object
from the underlying TMB object.

Arguments to pass onto the broom.mixed: : tidy.stanfit method.

54 mp_tmb_calibrator

mp_tmb_calibrator Make TMB Calibrator

Description

Construct an object that can get used to calibrate an object produced by mp_tmb_model_spec or
mp_tmb_library, and possibly modified by mp_tmb_insert or mp_tmb_update.

Usage

mp_tmb_calibrator(
spec,
data,
traj,
par,
tv = character(),
outputs = traj,
default = list(),

time = NULL
)
Arguments

spec An TMB model spec to fit to data. Such specs can be produced by mp_tmb_model_spec
ormp_tmb_library, and possibly modified with mp_tmb_insert and mp_tmb_update.

data A data frame containing trajectories to fit to and possibly time-varying parame-
ters. The data must be of the same format as that produced by mp_trajectory.

traj A character vector giving the names of trajectories to fit to data, or a named list
of likelihood distributions specified with distribution for each trajectory.

par A character vector giving the names of parameters, either time-varying or not,
to fit using trajectory match.

tv A character vector giving the names of parameters to make time-varying accord-
ing to the values in data, or a radial basis function specified with mp_rbf.

outputs A character vector of outputs that will be generated when mp_trajectory,
mp_trajectory_sd, or mp_trajectory_ensemble are called on the optimized
calibrator. By default it is just the trajectories listed in traj.

default A list of default values to use to update the defaults in the spec. By default
nothing is updated. Alternatively one could use mp_tmb_update to update the
spec outside of the function. Indeed such an approach is necessary if new expres-
sions, in addition to default updates, need to be added to the spec (e.g. seasonally
varying transmission).

time Specify the start and end time of the simulated trajectories, and the time period

associated with each time step. Currently the only valid choice is NULL, which
takes simulation bounds from the data.

mp_tmb_coef

Examples

spec = mp_tmb_library("starter_models"”,
sim

[P}

sir
= mp_simulator(spec, 50, "infection”)

data = mp_trajectory(sim)

cal

’
’
’

’

)

= mp_tmb_calibrator(
spec

data

traj = "infection”

par = "beta”

default = list(beta = 0.25)

mp_optimize(cal)
mp_tmb_coef(cal) ## requires broom.mixed package

, package =

55

"macpan2")

mp_tmb_coef

TMB Model Coefficient Table

Description

TMB Model Coefficient Table

Usage

mp_tmb_coef (model, back_transform

TRUE,

Arguments

model

back_transform

Value

>

Object that contains information about model coefficients.

A boolean to indicate if model coefficients should be back transformed to dis-

play their defaults, estimates, and confidence intervals on the original scale. Co-

efficient names are also stripped of

their transformation identifier. Currently,

this back transformation only applies to log transformed coefficients that have
been named with "log_" prefix or logit transformed coefficients that have been
named with "logit_" prefix. Back transformation also applies to time varying
parameters and distributional parameters that get automatic prefixes when used.

back_transform defaults to TRUE.

Arguments to pass onto the broom.mixed: : tidy. TMB method.

A data frame that describes the fitted coefficients.

56 mp_tmb_expr_list

mp_tmb_expr_list Expression List

Description

Create a list of expressions for defining a compartmental model in TMB.

Usage

mp_tmb_expr_list(
before = list(),
during = list(),
after = list(),
.simulate_exprs = character(0L)

)
Arguments

before List of formulas to be evaluated in the order provided before the simulation loop
begins. Each formula must have a left hand side that gives the name of the
matrix being updated, and a right hand side giving an expression containing
only the names of matrices in the model, functions defined in macpan2.cpp,
and numerical literals (e.g. 3.14). The available functions are described in
engine_functions. Names can be provided for the components of before, and
these names do not have to be unique. These names are used by the . simulate_exprs
argument.

during List of formulas to be evaluated at every iteration of the simulation loop, with
the same rules as before.

after List of formulas to be evaluated after the simulation loop, with the same rules as

before.
.simulate_exprs

Character vector of names of expressions to be evaluated within TMB simulate
blocks. This is useful when an expression cannot be evaluated during the compu-
tation of the objective function and its gradients (e.g. if the expression contains
randomness or other discontinuities that will break the automatic differentiation
machinery of TMB).

Value
Object of class ExprList with the following methods.

Methods:

* $data_arg(...): Return the following components of the data structure to pass to C++.
— expr_output_id — Indices into the list of matrices identifying the matrix being pro-
duced.
— expr_sim_block — Identified whether or not the expression should be evaluated inside a
simulate macro within TMB.

mp_tmb_fixef_cov 57

— expr_num_p_table_rows — Number of rows associated with each expression in the parse
table (p_table_x)

— eval_schedule — Vector giving the number of expressions to evaluate in each phase
(before, during, or after) of the simulation.

— p_table_x — Parse table column giving an index for looking up either function, matrix,
or literal.

— p_table_n — Parse table column giving the number of arguments in functions.

— p_table_i — Parse table column giving indices for looking up the rows in the parse table
corresponding with the first argument of the function.

Method Arguments:
.. .: Character vector containing the names of the matrices in the model.
mp_tmb_fixef_cov Covariance of Fixed Effect Estimates
Description

Covariance of Fixed Effect Estimates

Usage

mp_tmb_fixef_cov(model)

Arguments

model Object that contains information about fitted model parameters.

Value

A covariance matrix.

mp_tmb_insert Modify a TMB Model Spec

Description

Insert, update, or delete elements of a TMB model spec, produced using mp_tmb_library or
mp_tmb_model_spec, or mp_tmb_delete. The only difference between mp_tmb_insert and mp_tmb_update
is that the former shifts the positions of existing expressions to make room for the new expressions,

whereas the latter overwrites existing expressions using the new expressions. The treatment of new

default values and integers is the same. The examples below clarify this difference. Note that
mp_tmb_delete does not contain an expressions argument, because it is not necessary to specify

new expressions in the case of deletion.

58 mp_tmb_insert

Usage
mp_tmb_insert(
model,
phase = "during”,
at = 1L,

expressions = list(),
default = list(),

integers = list(),

must_save = character(),
must_not_save = character(),
sim_exprs = character()

)

mp_tmb_update(
model,
phase = "during”,
at = 1L,

expressions = list(),
default = list(),

integers = list(),

must_save = character(),
must_not_save = character(),
sim_exprs = character()

mp_tmb_delete(
model,
phase,
at,
default = character(),
integers = character(),
must_save = character(),
must_not_save = character(),
sim_exprs = character()

)
Arguments
model TMB model spec object produced using mp_tmb_library or mp_tmb_model_spec
phase At what phase should expressions be inserted, updated, or deleted.
at Expression number, which can be identified by printing out model, at which

the expressions should be inserted or updated. If inserted then the existing
expressions with number at and higher are shifted after the new expressions
are added. If updated, then the existing expressions with number from at to
at + length(expressions) - 1 are replaced with the new expressions. For
mp_tmb_delete, a numeric vector of integers identifying expressions to delete
from the model.

mp_tmb_insert 59

expressions Expressions to insert into the model spec or to replace existing expressions.

default Named list of objects, each of which can be coerced into a numeric matrix.
The names refer to variables that appear in before, during, and after. For
mp_tmb_delete, a character vector of such objects to delete from the model.

integers Named list of vectors that can be coerced to integer vectors. These integer vec-
tors can be used by name in model formulas to provide indexing of matrices and
as grouping factors in group_sums. For mp_tmb_delete, a character vector of
such objects to delete from the model.

must_save Character vector of the names of matrices that must have their values stored at
every iteration of the simulation loop. For example, a matrix that the user does
not want to be returned but that impacts dynamics with a time lag must be saved
and therefore in this list.

must_not_save Character vector of the names of matrices that must not have their values stored
at every iteration of the simulation loop. For example, the user may ask to
return a very large matrix that would create performance issues if stored at each
iteration. The creator of the model can mark such matrices making it impossible
for the user of the model to save their full simulation history.

sim_exprs Character vector of the names of before, during, and after expressions that
must only be evaluated when simulations are being produced and not when the
objective function is being evaluated. For example, expressions that generate
stochasticity should be listed in sim_exprs because TMB objective functions
must be continuous.

Details

These modifications do not update the model specification in-place. Instead the output of mp_tmb_insert,
mp_tmb_update, and mp_tmb_delete define a new model specification and should be saved if you
want to use the new model (e.g., new_model = mp_tmb_insert(model, ...)).

Value

A new model spec object with updated and/or inserted information.

Examples

[T

si = mp_tmb_library("starter_models"”, "si"”, package = "macpan2")
print(si)

Update the mixing process to include

optional phenomenological heterogeneity.

We need mp_tmb_update here so that

the previous infection expression is

overwritten.

mp_tmb_update(si, phase = "during”
, at =1
, expressions = list(infection ~ beta * I * (S/N)*zeta)
, default = list(zeta = 1)

)

60

Parameterize with log_beta in place of beta.
We need mp_tmb_insert here so that the
existing expression for computing the initial
number of susceptible indiviudals is not
overwritten.
mp_tmb_insert(si, phase = "before”
, at =1
, expressions = list(beta ~ exp(log_beta))
, default = list(log_beta = log(0.5))
)

mp_tmb_insert_reports

mp_tmb_insert_reports Insert Reports

Description

A version of mp_tmb_insert making it more convenient to transform an incidence variable into a
reports variable, which accounts for reporting delays and under-reporting. This new reports variable
is a convolution of the simulation history of an incidence variable with a kernel that is proportional

to a Gamma distribution of reporting delay times.

Usage

mp_tmb_insert_reports(
model,
incidence_name,
report_prob,
mean_delay,
cv_delay,
reports_name = sprintf("reported_%s", incidence_name),

report_prob_name = sprintf("%s_report_prob”, incidence_name),
mean_delay_name = sprintf("%s_mean_delay”, incidence_name),

cv_delay_name = sprintf("%s_cv_delay”, incidence_name)

)
Arguments
model A model produced by mp_tmb_model_spec.
incidence_name Name of the incidence variable to be transformed.
report_prob Value to use for the reporting probability; the proportion of cases that get re-
ported.
mean_delay Mean of the Gamma distribution of reporting delay times.
cv_delay Coefficient of variation of the Gamma distribution of reporting delay times.

reports_name Name of the new reports variable.
report_prob_name
Name of the variable containing report_prob.

mp_tmb_library 61

mean_delay_name
Name of the variable containing mean_delay.

cv_delay_name Name of the variable containing cv_delay.

mp_tmb_library TMB Library

Description

Get a TMB model specification from a model library.

Usage
mp_tmb_library(..., package = NULL, alternative_specs = FALSE)
Arguments
File path components pointing to a directory that contains an R script that creates
an object called spec, which is produced by mp_tmb_model_spec.
package If NULL, file.path is used to put together the ... components but if package
is the name of a package (as a character string) then system.file is used to put
together the . .. components.

alternative_specs
If TRUE, return a list of alternative specification objects. For models without al-
ternatives this will cause the return value to be a list with one element containing
a spec object.

See Also

show_models()

Examples

mp_tmb_library(
"starter_models"
. si”
, package = "macpan2”

)

62

mp_tmb_model_spec

mp_tmb_model_spec

Specify a TMB Model

Description

Specify a model in the TMB engine.

Usage

mp_tmb_model_spec(
before = list(),
during = list(),

after =
default

integers
must_save
must_not_save

list(),

list(),

list(),
character(),

= character(),

sim_exprs = character(),
state_update = c("euler”, "rk4", "euler_multinomial”, "hazard")

Arguments

before

during

after

default

integers

must_save

List of formulas to be evaluated (in the order provided) before the simulation
loop begins. Each formula must have a left hand side that gives the name of the
matrix being updated, and a right hand side giving an expression containing only
the names of matrices in the model, functions defined in the TMB engine, and
numerical literals (e.g. 3.14). The available functions in the TMB engine can be
described in engine_functions. Names can be provided for the components
of before, and these names do not have to be unique. These names are used by
the sim_exprs argument.

List of formulas to be evaluated at every iteration of the simulation loop, with
the same rules as before.

List of formulas to be evaluated after the simulation loop, with the same rules as
before.

Named list of objects, each of which can be coerced into a numeric matrix.
The names refer to variables that appear in before, during, and after.

Named list of vectors that can be coerced to integer vectors. These integer vec-
tors can be used by name in model formulas to provide indexing of matrices and
as grouping factors in group_sums.

Character vector of the names of matrices that must have their values stored at
every iteration of the simulation loop. For example, a matrix that the user does
not want to be returned but that impacts dynamics with a time lag must be saved
and therefore in this list.

mp_traj 63

must_not_save Character vector of the names of matrices that must not have their values stored
at every iteration of the simulation loop. For example, the user may ask to
return a very large matrix that would create performance issues if stored at each
iteration. The creator of the model can mark such matrices making it impossible
for the user of the model to save their full simulation history.

sim_exprs Character vector of the names of before, during, and after expressions that
must only be evaluated when simulations are being produced and not when the
objective function is being evaluated. For example, expressions that generate
stochasticity should be listed in sim_exprs because TMB objective functions
must be continuous.

state_update (experimental) Optional character vector for how to update the state variables
when it is relevant. Options include "euler”, "rk4", and "euler_multinomial”.

mp_traj Trajectory Specification

Description

Specify a set of trajectories to fit. The output of this function is intended to be passed to the traj
argument of mp_tmb_calibrator.

Usage

mp_traj(likelihood = list(), condensation = list())

Arguments

likelihood List of likelihood components. The names of the list identify the trajectory
associated with each likelihood component.

condensation List of condensation methods. The names of the list identify the trajectories
produced by each condensation method.

mp_trajectory Trajectory

Description

Return simulations of the trajectory of the output variables of a dynamical model simulator. To see
this functionality in context, please see vignette(”quickstart"”).

64

mp_trajectory

Usage

mp_trajectory(model, include_initial = FALSE)

mp_trajectory_sd(model, conf.int = FALSE, conf.level = 0.95)
mp_trajectory_ensemble(model, n, probs = c(0.025, 0.975))
mp_trajectory_sim(model, n, probs = c(0.025, 0.25, 0.5, 0.75, 0.975))

mp_trajectory_replicate(model, n)

Arguments

model A dynamical model simulator produced by mp_simulator.

include_initial
Should the initial values of the simulation be included in the output? If TRUE
this will include outputs for time == @ associated with the initial values. See
mp_initial for another approach to getting the initial values.

conf.int Should confidence intervals be produced?

conf.level If conf.int is TRUE, what confidence level should be used? For example, the
default of @. 95 corresponds to 95% confidence intervals.

n Number of random trajectories to simulate.

probs Numeric vector of probabilities corresponding to quantiles for summarizing the

results over the random realizations.

Value

A data frame with one row for each simulated value and the following columns.

matrix Name of the variable in the model. All variables are matrix-valued in macpan?2 (scalars are
technically 1-by-1 matrices), which explains the name of this field. In hindsight I would have
called it variable.

time Time index of the simulated value, with time = @ indicating initial values.

row The 0-based index of the row of the matrix, or the name of the row of the matrix if row names
(or names for column vectors) are supplied for the default value of the matrix.

col The 0-based index of the column of the matrix, or the name of the column of the matrix if
column names are supplied for the default value of the matrix. It is also possible that this
column is blank if everything is either a scalar or column vector (a common case).

value (mp_trajectory and mp_trajectory_sd) Simulation values.

sd (for mp_trajectory_sd only) The standard deviations of the simulated values accounting for
parameter estimation uncertainty.

conf.low (for mp_trajectory_sd only) The lower bounds of the confidence interval for the simu-
lated values.

conf.high (for mp_trajectory_sd only) The upper bounds of the confidence interval for the sim-
ulated values.

n% (for mp_trajectory_[ensemble|sim]) The n-th quantiles of the simulation values over re-
peated simulations.

mp_triangle 65

Functions

* mp_trajectory_sd(): Simulate a trajectory that includes uncertainty information provided
by the sdreport function in TMB with default settings.

* mp_trajectory_ensemble(): Simulate a trajectory that includes uncertainty information
provided by repeatedly sampling from a normal approximation to the distribution of the fit-
ted parameters, and generating one trajectory for each of these samples. The quantiles of the
empirical distribution of these trajectories can be used to produce a confidence interval for the
fitted trajectory.

* mp_trajectory_sim(): Generate quantiles over n realizations of the trajectory. Instead of a
value column in the output data frame, there is one column for each of the quantiles defined
in probs.

e mp_trajectory_replicate(): Generate a list of n simulation results.

Examples

spec = mp_tmb_library("starter_models”
, "si
, package = "macpan2”

)

simulator = mp_simulator(spec
, time_steps = 10L
, outputs = c("infection”, "I")

)

trajectory = mp_trajectory(simulator)

print(trajectory)

n

mp_triangle Self Cartesian Product Excluding One Off-Diagonal Side

Description

Self Cartesian Product Excluding One Off-Diagonal Side

Usage

mp_triangle(
X,
y_labelling_column_names,
exclude_diag = TRUE,
lower_tri = FALSE

66 mp_zero_vector

Arguments
X An index.
y_labelling_column_names
TODO

exclude_diag Should ’diagonal’ commponents be excluded from the output.

lower_tri Should the lower triangular components be include from the output. If FALSE
the result is upper triangular.

See Also

Other functions that take products of index tables and return one index tables mp_cartesian(),
mp_linear (), mp_square(), mp_symmetric()

mp_union Union of Indexes

Description

Union of Indexes

Usage

mp_union(...)

Arguments

Indexes.

See Also

Other functions that return index tables mp_cartesian(), mp_index (), mp_rename (), mp_subset ()

mp_zero_vector Zero Vector

Description

Create a numeric vector of all zeros with names given by x

Usage
mp_zero_vector(x, ...)
Arguments
X Object representing the names of the output vector. Most commonly this will be

a character vector.
Passed on to S3 methods.

names_and_labels 67

names_

and_labels Names and Labels

Description

This page describes functions for giving names and labels to entities in structured models.

Usage

to_labels(x)

to_names(x)

to_name (x)

to_name_pairs(x)

to_values(x)

Arguments
X Object from which to extract its name, names, labels, name-pairs, or values. Not
all types of objects will work for all functions.
Value

Character vector (or numeric vector in the case of to_values) that describes x.

Functions

to_labels(): Extract a vector for describing the rows of a data frame or values of a numeric
vector.

to_names(): Extract a character vector for describing the character-valued columns in a data
frame or the flattened structure of a numeric vector. Names obey the following restrictions: (1)
they cannot have dots, (2) all values must start with a letter, (3) all characters must be letters,
numbers, or underscore.

to_name(): Extract a string (i.e. length-1 character vector) for describing the character-valued
columns in a data frame or the flattened structure of a numeric vector. The name of an object
is the dot-concatenation of its names.

to_name_pairs(): A character vector with all possible pairwise dot-concatenations of a set
of names.

to_values(): Extract the numeric column from a data frame with only a single numerical
column. This data frame might have more than one column, but only one of them can be
numeric. This function will also turn numeric matrix and array objects with dimnames
into a flattened numeric vector with labels produced by appropriately dot-concatenating the
dimnames.

68 names_and_labels

Context

A goal of macpan? is to provide a mechanism for representing structured compartmental models.
An example of such a model is to have each compartment in an SEIR model split into a set of spatial
locations and into a set of age groups. It is crucial but difficult to assign meaningful and consistent
names to the compartments, flow rates, transmission rates, contact rates, sub-population sizes, and
other parameters determining these quantities. Such names should convey how the different quan-
tities relate to one another. For example, the names should make clear that the rate of flow between
two compartments is specific to, say, the age group and location of those compartments. The nam-
ing system should facilitate identifying model quantities and sets of quantities. For example, in a
spatially structured model we might want to refer to all states in a particular location (e.g. Toronto)
and a specific state within that location (e.g. susceptible individuals in Toronto).

Model entities (e.g. states, flow rates, transmission rates), can be described using a data frame of
string-valued columns. The rows of these data frames represent the entities being represented. The
columns of the data frame represent different ways to describe the rows.

EpiSympVax = data.frame(
Epi = c(rep(c(”"s”, "E", "I", "I", "R", "beta"), 2), "alpha”, "gamma", "gamma”, "infectiousness”, "infe

Symp = c(rep(c("”, "", "mild", "severe”, "",6 ""), 2), "", "mild", "severe"”, "mild", "severe”, ""),
Vax = c(rep(c("unvax"”, "vax"), each = 6), "", 6 "", "r nroo"rl "dose_rate")
)
EpiSympVax
#> Epi Symp Vax
#> 1 S unvax
#> 2 E unvax
#> 3 I mild unvax
#> 4 I severe unvax
#> 5 R unvax
#> 6 beta unvax
#> 7 S vax
#> 8 E vax
#> 9 I mild vax
#> 10 I severe vax
#> 11 R vax
#> 12 beta vax
#> 13 alpha
#> 14 gamma mild
#> 15 gamma severe
#> 16 infectiousness mild
#> 17 infectiousness severe
#> 18 dose_rate

Non-empty values in each cell must contain only letters, numbers, underscores, and must start with
a letter. Empty values are zero-length strings that can be used to indicate that some partitions are
not applicable to some variables. The purpose for these restrictions is to facilitate the construction
of strings and character vectors that summarize different aspects of the data frame. When taken
together, these summaries can be inverted to restore the full labelled partition and so they represent
zero information loss. This equivalence allows us to go back-and-forth between the two represen-
tations without loosing information, but perhaps gaining convenience.

nlist 69

There are three types of summaries: the names, the name, and the labels. The names of a data frame
are the names of the string-valued columns.

to_names (EpiSympVax)
#> [-I:] HEpiH ”Symp” HVaXH

The name of a data frame is the dot-concatenation of the names.

to_name (EpiSympVax)
#> [1] "Epi.Symp.Vax"

The labels of a data frame is the row-wise dot-concatenation of the string-valued columns.

to_labels(EpiSympVax)

#> [1] "S..unvax” "E..unvax" "I.mild.unvax”
#> [4] "I.severe.unvax" "R..unvax" "beta. .unvax”
#> [7] "S..vax" "E..vax" "I.mild.vax"

#> [10] "I.severe.vax” "R..vax" "beta. .vax"

#> [13] "alpha..” "gamma.mild."” "gamma.severe."
#> [16] "infectiousness.mild.” "infectiousness.severe." "..dose_rate”

These labels give a unique single character string for referring to each variable. With only the labels
and one of either the names or the name, one may recover the labelled partition. The labels provide
convenient names for the variables — i.e. rownames. By convention we use UpperCamelCase for
partition names and a modified form of snake_case for variable labels. Our modification of snake
case allows for single uppercase letters in order to accommodate the convention in epidemiology
for using single uppercase letters to refer to state variables. For example, S, I, and R, as well as
I_mild and I_severe, would be consistent with our modified snake case style.

nlist Self Naming List

Description

Self Naming List

Usage

nlist(...)

Arguments

Objects to put into the list

https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Snake_case

70

Reader

rbf

Radial Basis Functions

Description

Compute a set of radial basis functions (dimension of them).

Usage

rbf (time_steps, dimension, scale = time_steps/dimension)

Arguments

time_steps

number of time steps in the model

dimension number of gaussians in the basis
scale width of the gaussians
Examples
matplot(rbf(100, 5), type = "1")
Reader Reader
Description

Construct objects for reading data.

Usage

Reader(...)

CSVReader(...)
JSONReader(...)

TXTReader(...)

RReader(...)

NULLReader(...)

Arguments

Character vectors giving path components to the file to be read.

show_models 71

Functions

e CSVReader(): Read CSV files.

¢ JSONReader (): Read JSON files.
TXTReader (): Read TXT files.

* RReader(): Read R files.

NULLReader (): Placeholder reader that always returns NULL.

show_models Print a table of contents of available models

Description

Collects information from the headers of the README files in the model directories and returns
the results as a data frame

Usage

show_models(
dir = system.file("starter_models"”, package = "macpan2"),
show_missing = FALSE,
for_markdown = FALSE

)

Arguments

dir directory to list
show_missing (logical) include entries for models with no README information?

for_markdown (logical) format for rendering the table with markdown-formatted links to model
readme files?

Value
a data frame containing entries Directory (model directory), Title (model title), Description

(short description)

Examples

show_models(show_missing = TRUE)

72 StringData

simple_sims Simple Iterated Simulation

Description

Simple Iterated Simulation

Usage

simple_sims(iteration_exprs, time_steps, int_vecs = list(), mats = list())

Arguments

iteration_exprs
List of expressions to pass to the engine. The expressions are only allowed to use
valid engine_functions. Each expression is evaluated in order, once for each
iteration. The number of iterations is controlled by the time_steps argument.

time_steps Number of time steps to iterate.
int_vecs Named list of integer vectors.
mats Named list of matrices.

Value

A data frame with the simulation results.

StringData String Data

Description

Create objects for representing names and labels in a dynamical model.

Usage

StringDataFromFrame(data)
StringDataFromDotted(labels, name)

S3 method for class 'StringData’
print(x, ...)

https://canmod.github.io/macpan2/articles/cpp_side

to_positions 73

Arguments
data Data frame with names given by column names and labels by the elements of
the columns.
labels Character vector with (dot-separated) partition labels.
name Character scalar with (dot-separated) partition name.
X StringData object

Not used but present for S3 method consistency.

Methods (by generic)

e print(StringData): Print out a StringData object.

Functions

* StringDataFromFrame(): Construct object from a data frame without any dots in either the
names or the values.

* StringDataFromDotted(): Construct object from a character scalar with (dot-separated) par-
tition names and a character vector with (dot-separated) partition labels.

Examples

vars = (mp_cartesian(
mp_index(Epi = c("S", "I", "R"))
, mp_index(Age = c("young”, "old"))
)
|> as.data.frame()
|> StringDataFromFrame()
)
vars
vars$dot ()

to_positions To Positions

Description

Return position vector of indices corresponding to the input object.

Usage

to_positions(x)

Arguments

X An object of a class that can be converted to a position vector.

74 Transform

See Also

mp_positions()

to_string To String

Description

Convert an object to a string.

Usage

to_string(x)

Arguments

X Object to convert to a string.

Value

A length-1 character vector.

Transform Transform

Description
Transform
Usage
Transform(variable, default = NULL, trans_variable = variable)
Identity(variable, default = NULL, trans_variable = variable)
Log(variable, default = NULL, trans_variable = sprintf("log_%s", variable))
Logit(
variable,

default = NULL,
trans_variable = sprintf("logit_%s", variable)

transform_distr_param 75

Arguments
variable Character string giving the name of a variable in the model.
default Default value for the untransformed variable. If NULL (the default) this value is

taken from the initial value in the model containing the transformation.

trans_variable Character string to use as the name of the transformed version of the variable.

Functions

e Identity(): Identity transformation.
* Log(): Log transformation.

* Logit(): Logit transformation.

transform_distr_param Distributional Parameter Transformation

Description

Objects used
e mp_identity - Identity transformation
* mp_log - Log transformation
* mp_logit - Logit transformation

* mp_sqrt - Square-root transformation

Usage

mp_identity
mp_log
mp_logit

mp_sqrt

Index

+ datasets
empty_matrix, 6
transform_distr_param, 75
+ indexes
mp_cartesian, 23
mp_index, 32
mp_rename, 47
mp_subset, 51
mp_union, 66
* ledgers
mp_aggregate, 23
mp_join, 35
* products
mp_cartesian, 23
mp_linear, 40
mp_square, 49
mp_symmetric, 52
mp_triangle, 65
(10
:, 10
‘% (engine_functions), 8
‘+¢ (engine_functions), 8
‘- (engine_functions), 8
‘/¢ (engine_functions), 8
“:¢ (engine_functions), 8
‘[‘ (engine_functions), 8
“%x%‘ (engine_functions), 8
‘%x%‘ (engine_functions), 8
‘¢~ (engine_functions), 8

all_consistent (comparison), 4
all_equal (comparison), 4
all_not_equal (comparison), 4
array, 67

assign, 17

assign (engine_functions), 8

BinaryOperator, 3
block (engine_functions), 8

76

c (engine_functions), 8

cbind, 71

cbind (engine_functions), 8
cbind_lag (engine_functions), 8
cbind_time (engine_functions), 8
character, 4, 32, 66

clamp (engine_functions), 8
col_sums (engine_functions), 8
colSums, 12

comparison, 4

convolution (engine_functions), 8
cos (engine_functions), 8
CSVReader (Reader), 70

data.frame, 32

dimnames, 67
distribution, 5, 54

dnbinom (engine_functions), 8
dnorm (engine_functions), 8
dpois (engine_functions), 8

empty_matrix, 6, 17, I8
engine_eval, 7,8
engine_functions, 7, 8, 56, 62, 72
exp (engine_functions), 8

file.path, 61

finalizer, 18

finalizer_char (finalizer), 18
finalizer_index (finalizer), 18
find_all_paths, 19
fit_distr_params, 6, 19
formula, 56, 62

from_diag (engine_functions), 8

group_sums, 59, 62
group_sums (engine_functions), 8

Identity (Transform), 74
initial_valid_vars, 21

INDEX

JSONReader (Reader), 70

labelling_column_names.Index
(mp_index), 32

labels.Index (mp_index), 32

LedgerDefinition, 21, 23, 35, 39

Log (Transform), 74

log (engine_functions), 8

Logit (Transform), 74

make_expr_parser, 22

match, 44

matrix, 6, 11,59, 62, 67

matrix (engine_functions), 8

mean (engine_functions), 8

mp_absolute_flow (mp_per_capita_flow),
43

mp_add_effects_descr
(mp_effects_descr), 27

mp_aggregate, 23, 37

mp_cartesian, 23, 34, 40, 47,49, 51, 52, 66

mp_cartesian(), 33

mp_default, 24

mp_default_list (mp_default), 24

mp_dynamic_model, 21, 25, 26, 39

mp_dynamic_simulator, 25

mp_effects_descr, 27

mp_euler, 27, 28

mp_euler_multinomial (mp_euler), 27

mp_expand, 28, 29

mp_extract, 29

mp_factors, 30

mp_final, 30

mp_final_list (mp_final), 30

mp_fit (fit_distr_params), 19

mp_flow_frame, 31

mp_group, 31

mp_hazard (mp_euler), 27

mp_identity (transform_distr_param), 75

mp_index, 23, 32, 35, 40, 47, 51, 66

mp_index (), 50

mp_initial, 34, 64

mp_initial_list (mp_initial), 34

mp_join, 21, 23, 35

mp_labels, 37

mp_layout_grid, 37

mp_layout_paths, 38

mp_ledgers, 39

mp_linear, 23, 40, 49, 52, 66

77

mp_log, 19
mp_log (transform_distr_param), 75
mp_log_normal (distribution), 5
mp_logit (transform_distr_param), 75
mp_logit_normal (distribution), 5
mp_lookup, 40
mp_model_starter, 41
mp_neg_bin (distribution), 5
mp_nofit (fit_distr_params), 19
mp_normal, 719
mp_normal (distribution), 5
mp_optimize, 41, 42
mp_optimizer_output, 41, 42
mp_par, 42
mp_per_capita_flow, 28, 29, 31, 43, 46, 50
mp_per_capita_inflow, 3/
mp_per_capita_inflow
(mp_per_capita_flow), 43
mp_per_capita_outflow
(mp_per_capita_flow), 43
mp_poisson (distribution), 5
mp_positions, 44
mp_positions(), 74
mp_rbf, 45, 54
mp_reduce, 46
mp_reference, 46
mp_rename, 23, 34,47, 51, 66
mp_rk4 (mp_euler), 27
mp_set_numbers (mp_structured_vector),
50
mp_set_numbers(), 34
mp_setdiff (mp_subset), 51
mp_sim_bounds, 48
mp_simulator, 25, 47, 64
mp_slices, 48
mp_sqrt (transform_distr_param), 75
mp_square, 23, 40, 49, 52, 66
mp_state_dependence_frame, 49
mp_state_vars, 50
mp_structured_vector, 50
mp_structured_vector(), 34
mp_subset, 23, 34, 47, 51, 66
mp_symmetric, 23, 40, 49, 52, 66
mp_time_scale, 52
mp_tmb, 53
mp_tmb_calibrator, 42, 45, 48, 54, 63
mp_tmb_coef, 27, 55
mp_tmb_delete, 57

78

mp_tmb_delete (mp_tmb_insert), 57
mp_tmb_expr_list, 56
mp_tmb_fixef_cov, 57
mp_tmb_insert, 54, 57, 60
mp_tmb_insert_reports, 60
mp_tmb_library, 54, 57, 58, 61
mp_tmb_model_spec, 25, 28, 29, 31, 38, 39,
50, 54, 57, 58, 60, 61, 62
mp_tmb_update, 54
mp_tmb_update (mp_tmb_insert), 57
mp_tmbstan_coef, 27, 53
mp_traj, 63
mp_trajectory, 54, 63
mp_trajectory_ensemble, 54
mp_trajectory_ensemble (mp_trajectory),
63
mp_trajectory_replicate
(mp_trajectory), 63
mp_trajectory_sd, 54
mp_trajectory_sd (mp_trajectory), 63
mp_trajectory_sim (mp_trajectory), 63
mp_triangle, 23, 40, 49, 52, 65
mp_uniform (distribution), 5
mp_union, 23, 34,47, 51, 66
mp_zero_vector, 66

names. Index (mp_index), 32
names_and_labels, 67
nlist, 69

nlminb, 42

not_all_equal (comparison), 4
NULLReader (Reader), 70
numeric, 6, 59, 62, 66, 67

pgamma (engine_functions), 8
print (engine_functions), 8
print.Index (mp_index), 32
print.StringData (StringData), 72
proportions (engine_functions), 8

rbf, 70

rbind, /7

rbind (engine_functions), 8
rbind_lag (engine_functions), 8
rbind_time (engine_functions), 8
rbinom (engine_functions), 8
Reader, 70

recycle (engine_functions), 8
rep (engine_functions), 8

INDEX

reulermultinom (engine_functions), 8
rnbinom (engine_functions), 8

rnorm (engine_functions), 8

round (engine_functions), 8

row_sums (engine_functions), 8
rowSums, /2

rpois (engine_functions), 8

RReader (Reader), 70

sd (engine_functions), 8

seq, 10

seq (engine_functions), 8
show_models, 71

show_models(), 61

simple_sims, 8, 72

spec, 49

StringData, 72

StringDataFromDotted (StringData), 72
StringDataFromFrame (StringData), 72
sum (engine_functions), 8
system.file, 61

t, 11,12

t (engine_functions), 8
time_group (engine_functions), 8
time_step (engine_functions), 8
time_var (engine_functions), 8
to_diag (engine_functions), 8
to_labels (names_and_labels), 67
to_name (names_and_labels), 67
to_name_pairs (names_and_labels), 67
to_names (names_and_labels), 67
to_positions, 73

to_string, 74

to_values (names_and_labels), 67
Transform, 74
transform_distr_param, 6, 75
TXTReader (Reader), 70

unpack (engine_functions), 8

	BinaryOperator
	comparison
	distribution
	empty_matrix
	engine_eval
	engine_functions
	finalizer
	find_all_paths
	fit_distr_params
	initial_valid_vars
	LedgerDefinition
	make_expr_parser
	mp_aggregate
	mp_cartesian
	mp_default
	mp_dynamic_model
	mp_dynamic_simulator
	mp_effects_descr
	mp_euler
	mp_expand
	mp_extract
	mp_factors
	mp_final
	mp_flow_frame
	mp_group
	mp_index
	mp_initial
	mp_join
	mp_labels
	mp_layout_grid
	mp_layout_paths
	mp_ledgers
	mp_linear
	mp_lookup
	mp_model_starter
	mp_optimize
	mp_optimizer_output
	mp_par
	mp_per_capita_flow
	mp_positions
	mp_rbf
	mp_reduce
	mp_reference
	mp_rename
	mp_simulator
	mp_sim_bounds
	mp_slices
	mp_square
	mp_state_dependence_frame
	mp_state_vars
	mp_structured_vector
	mp_subset
	mp_symmetric
	mp_time_scale
	mp_tmb
	mp_tmbstan_coef
	mp_tmb_calibrator
	mp_tmb_coef
	mp_tmb_expr_list
	mp_tmb_fixef_cov
	mp_tmb_insert
	mp_tmb_insert_reports
	mp_tmb_library
	mp_tmb_model_spec
	mp_traj
	mp_trajectory
	mp_triangle
	mp_union
	mp_zero_vector
	names_and_labels
	nlist
	rbf
	Reader
	show_models
	simple_sims
	StringData
	to_positions
	to_string
	Transform
	transform_distr_param
	Index

